424^111×727^188×828^199 find the unit digit
Answers
Answer:
Step-by-step explanation:
Lets multiply the given ones digits so,
First4*1=4. (424¹¹¹)
7*8=56. (727*828)
8*9=72. (828*199)
At the last step multiply each ones place digits
Then,
4*6*2=48
Ones digit is 8
If you understood pls like
Consider 424¹¹¹.
Ones digit of 424 is 4, which is equal to the remainder got on dividing it by 10. Thus,
424 ≡ 4 (mod 10)
Squaring both sides,
424² ≡ 4² (mod 10)
⇒ 424² ≡ 16 (mod 10)
As 16 ≡ 6 (mod 10),
⇒ 424² ≡ 6 (mod 10)
The remainder got here is 6. So the same remainder 6 is also got on dividing the powers of 424² by 10.
⇒ (424²)ⁿ ≡ 6 (mod 10)
So,
(424²)⁵⁵ ≡ 6 (mod 10)
⇒ 424¹¹⁰ ≡ 6 (mod 10)
Now, multiply both sides by 424.
⇒ 424¹¹⁰ × 424 ≡ 6 × 424 (mod 10)
But, according to 424 ≡ 4 (mod 10),
⇒ 424¹¹⁰ × 424 ≡ 6 × 4 (mod 10)
⇒ 424¹¹¹ ≡ 24 (mod 10)
⇒ 424¹¹¹ ≡ 4 (mod 10) [∵ 24 ≡ 4 (mod 10)]
Thus the ones digit of 424¹¹¹ is 4.
Consider 727¹⁸⁸.
Ones digit of 727 is 7.
⇒ 727 ≡ 7 (mod 10)
727⁴ ≡ 7⁴ (mod 10)
⇒ 727⁴ ≡ 2401 (mod 10)
⇒ 727⁴ ≡ 1 (mod 10) [∵ 2401 ≡ 1 (mod 10)]
(727⁴)⁴⁷ ≡ 1⁴⁷ (mod 10)
⇒ 727¹⁸⁸ ≡ 1 (mod 10)
Thus the ones digit of 727¹⁸⁸ is 1.
Consider 828¹⁹⁹.
Ones digit of 828 is 8.
⇒ 828 ≡ 8 (mod 10)
828³ ≡ 8³ (mod 10)
⇒ 828³ ≡ 512 (mod 10)
⇒ 828³ ≡ 2 (mod 10) → (1) [∵ 512 ≡ 2 (mod 10)]
828⁴ ≡ 8⁴ (mod 10)
⇒ 828⁴ ≡ 4096 (mod 10)
⇒ 828⁴ ≡ 6 (mod 10) [∵ 4096 ≡ 6 (mod 10)]
∴ (828⁴)ⁿ ≡ 6 (mod 10)
(828⁴)⁴⁹ ≡ 6 (mod 10)
⇒ 828¹⁹⁶ ≡ 6 (mod 10)
828¹⁹⁶ × 828³ ≡ 6 × 828³ (mod 10)
⇒ 828¹⁹⁹ ≡ 6 × 2 (mod 10) [From (1)]
⇒ 828¹⁹⁹ ≡ 12 (mod 10)
⇒ 828¹⁹⁹ ≡ 2 (mod 10) [∵ 12 ≡ 2 (mod 10)]
Thus the ones digit of 828¹⁹⁹ is 2.
Now multiply each ones digits.
⇒ 424¹¹¹ × 727¹⁸⁸ × 828¹⁹⁹ ≡ 4 × 1 × 2 (mod 10)
⇒ 424¹¹¹ × 727¹⁸⁸ × 828¹⁹⁹ ≡ 8 (mod 10)
Thus the answer is 8.