Math, asked by ry73574, 11 months ago

44.What is the value of [(tan5 A+ tan3 A]/ 4cos4 A (tan5 A – tan3 A)]?​

Answers

Answered by Agastya0606
0

Given: [(tan5 A+ tan3 A]/ 4cos4 A (tan5 A – tan3 A)]

To find: The value of the given expression.

Solution:

  • As we have given the expression in terms of tan A, so lets vonvert it in the form of sin A and cos A.
  • After converting, we get:

            [(sin 5A/ cos 5A+ sin 3A/ cos 3A]/  (sin 5A/ cos 5A – sin 3A/ cos 3A ) 4cos 4A]

  • Now cross multiplying, we get:

            {  sin 5A cos 3A + sin 3A cos 5A / cos 5A cos 3A  } /  { ( sin 5A cos 3A - sin 3A cos 5A / cos 5A cos 3A ) x 4cos 4A }

  • So cancelling  cos 5A cos 3A , we get:

            sin 5A cos 3A + sin 3A cos 5A  / (sin 5A cos 3A - sin 3A cos 5A ) x 4cos 4A

  • Now we know the identity:

            sin(A+B) = sinAcosB + cosAsinB

            sin(A-B) = sinAcosB - cosAsinB

            sin 2A = 2sinAcosA

  • Applying this in the expression, we get:

            sin(5A+3A) / sin(5A-3A)x 4cos 4A

            sin(8A) / sin(2A) x 4cos 4A

            sin 2(4A) /  sin(2A) x 4cos 4A

            2sin 4A cos 4A / sin(2A) x 4cos 4A

  • Cancelling cos 4A, we get:

            2sin 4A/sin(2A) x 4

            2 sin 2(2A) / sin(2A) x 4

            2 x 2sin2A cos2A / sin 2A x 4

  • Cancelling sin 2A, we get:

            4 cos 2A / 4

            cos 2A.

Answer:

             So the value of the expression [(tan5 A+ tan3 A]/ 4cos4 A (tan5 A – tan3 A)] is cos 2A.

Similar questions