Math, asked by sasmitaswain3033, 3 months ago

4⁵ *a⁷*b⁵/4²*a⁵*b²=

Answers

Answered by Anonymous
14

Answer :-

\implies\sf \dfrac{4^5 \times a^7 \times b^5}{4^2 \times a^5 \times b^2}

\implies\sf \dfrac{4^5}{4^2} \times \dfrac{a^7}{a^5} \times \dfrac{b^5}{b^2}

Using the property -

  • \sf \dfrac{a^m}{a^n} = a^{m-n}

\implies\sf 4^{5-2} \times a^{7-5} \times b^{5-2}

\implies\sf 4^3 \times a^2 \times b^3

  • \sf 4^3 = 4 \times 4 \times 4 = 64

\implies\sf 64a^2b^3

\boxed{\sf \dfrac{4^5 \times a^7 \times b^5}{4^2 \times a^5 \times b^2} = 64a^2b^3}

Additional information :-

\underline{\text{Law of Exponents :}}

\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}

\bigstar\:\:\sf{(a^m)^n = a^{mn}}

\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}

\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}

\bigstar\:\:\sf\sqrt[ n]{\sf a} = (a)^{\dfrac{1}{n}}

Answered by BrainlyRish
5

Given : Expression = \longmapsto \bf \dfrac{4^5 \times a^{7} \times b^5 }{4^2 \times a^5 \times b^2} \\ \\ \\

Exigency To Solve : \longmapsto \bf \dfrac{4^5 \times a^{7} \times b^5 }{4^2 \times a^5 \times b^2} \\ \\ \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \qquad \bf{\large{\dag}}\;\;\bf \dfrac{4^5 \times a^{7} \times b^5 }{4^2 \times a^5 \times b^2 }\\ \\ \\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Solving \: the \: Given \: Expression \::}}\\

\qquad:\implies \sf \dfrac{4^5 \times a^{7} \times b^5 }{4^2 \times a^5 \times b^2} \\ \\ \\

Or ,

\qquad:\implies \sf \dfrac{4^5 }{4^2}\times \dfrac{a^{7}}{a^5} \times \dfrac{b^5}{b^2 }  \\ \\ \\

\dag\:\it{As,\:We\:know\:that\::}\\\\

  •  \dfrac{a^m}{a^n} = a^{m-n}\\

\qquad:\implies \sf 4^{5-2}\times a^{7-5} \times b^{5-2}  \\ \\ \\

\qquad:\implies \sf 4^{3}\times a^{2} \times b^{3}  \\ \\ \\

\qquad:\implies \sf 4\times 4\times 4 \times a^{2} \times b^{3}  \\ \\ \\

\qquad:\implies \sf 16 \times 4 \times a^{2} \times b^{3}  \\ \\ \\

\qquad:\implies \sf 64\times a^{2} \times b^{3}  \\ \\ \\

Or ,

\qquad:\implies \bf 64a^{2}b^{3}  \:\:\longrightarrow \:Required\:AnswEr \:\\ \\ \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\boxed{\begin{array}{cc}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{array}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions