Math, asked by dhillonsimran135, 9 months ago

45. Discuss nature of roots of
2x {}^{2}  -  \sqrt{5} x + 1 = 0

Answers

Answered by amitkumar44481
3

 \bold \red \star \: \large \underline{Given:-}

2 {x}^{2}  -  \sqrt{5} x + 1 = 0. \\  \\

___________________________________

 \\  \\  \bold \red \star \: \large \underline{Solution:-} \\

We have,

equation \:  \: \:  \:  2 {x}^{2}   -  \sqrt{5} x + 1 = 0. \\  \\

Comparing with general equation,

 \:  \:    \:  \:  \:  \: a {x}^{2}  + bx + c = 0.

Where,

 \:  \:  \:  \:  \:  \: a = 2 \:  \: \:  \:  \:  \:  b =  -  \sqrt{5}   \: \:  \:  \:  \: c = 1.

 \:  \: \:   \:  \: D= {b}^{2}  - 4ac. \\  \\  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  =  {   ( - \sqrt{5}) }^{2}  - 4 \times 2 \times 1. \\  \\   \:  \:   \:  \:  \:  \:   \:  \:  \:  \: = 5 - 8. \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  - 3. \\  \\

D < 0.

Discriminant smaller than zero.

So,  \bold{ \: this  \: given  \: equation  \:  has \: \pink{  no \:  real  \: root}. }

Similar questions