Math, asked by vrindasomani07, 2 months ago

45.
Find inverse of the following matrices (if they exist) by elementary transformation
[2 1
[7 4]​

Answers

Answered by 8149214625
0

Step-by-step explanation:

nddzyzitfitdixidtid you are doing good time to go to your account can do so cute baby girl and the intended addressee s named above or below the orutslyrwutiz

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

➢ Given matrix is

\rm :\longmapsto\:\bigg[ \begin{matrix}2&1 \\ 7&4 \end{matrix} \bigg]

Let assume that

\rm :\longmapsto\:A = \bigg[ \begin{matrix}2&1 \\ 7&4 \end{matrix} \bigg]

Using Elementary Row Transformation Method, we have

\rm :\longmapsto\:A = IA

\rm :\longmapsto\: \bigg[ \begin{matrix}2&1 \\ 7&4 \end{matrix} \bigg] = \bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg]A

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{ \boxed{\bf{OP \: R_1 \:  \to \: 4R_1}}}

\rm :\longmapsto\: \bigg[ \begin{matrix}8&4 \\ 7&4 \end{matrix} \bigg] = \bigg[ \begin{matrix}4&0 \\ 0&1 \end{matrix} \bigg]A

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{ \boxed{\bf{OP \: R_1 \:  \to \: R_1 - R_2}}}

\rm :\longmapsto\: \bigg[ \begin{matrix}1&0 \\ 7&4 \end{matrix} \bigg] = \bigg[ \begin{matrix}4& - 1 \\ 0&1 \end{matrix} \bigg]A

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{ \boxed{\bf{OP \: R_2 \:  \to \: R_2 - 7R_1}}}

\rm :\longmapsto\: \bigg[ \begin{matrix}1&0 \\ 0&4 \end{matrix} \bigg] = \bigg[ \begin{matrix}4& - 1 \\  - 28&8 \end{matrix} \bigg]A

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{ \boxed{\bf{OP \: R_2 \:  \to \:  \frac{1}{4} R_2 }}}

\rm :\longmapsto\: \bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg] = \bigg[ \begin{matrix}4& - 1 \\  - 7&2 \end{matrix} \bigg]A

We know that

\bf :\longmapsto\: {AA}^{ - 1} =  {A}^{ - 1}A = I

So, on comparing we get

 \red{\bf :\longmapsto\:  {A}^{ - 1} = \bigg[ \begin{matrix}4& - 1 \\  - 7&2 \end{matrix} \bigg]}

Additional Information :-

\rm :\longmapsto\:A(adj \: A) = (adj \: A)A =  |A|I

\rm :\longmapsto\: |adj \: A|  =  { |A| }^{n - 1}

\rm :\longmapsto\: |Aadj \: A|  =  { |A| }^{n}

\rm :\longmapsto\: | {A}^{ - 1} |  = \dfrac{1}{ |A| }

\rm :\longmapsto\: |kA|  =  {k}^{n}  { |A| }

\rm :\longmapsto\: |AR|  =  |A| |R|

Similar questions