46. Find the value of cos (10) + cos (20°) + cos (30°) + cos (40) + ... + cos (360°)
Answers
Answer:
filledbookmark
USE APP
Sign in
Questions & Answers
CBSE
Mathematics
Grade 11
Trigonometric Ratios
Question
Answers
Related Questions
The value of cos10cos20cos30...cos900...cos1790
is?
A.12–√
B.0
C.1
D.None of these
Answer
VerifiedVerified
88.8K+ Views
1 Likes
Hint: First, we will rewrite the given values and then use the cosine value cos90=0
, in the obtained value. Then we will simplify the obtained value to find the required value.
Complete step-by-step answer:
We are given that cos10cos20cos30...cos900...cos1790
.
Rewriting this above equation, we get
⇒cos10cos20cos30cos40cos50cos60cos70cos80cos90...cos900...cos1790
Using the cosine value cos90=0
, in the above equation, we get
⇒cos10cos20cos30cos40cos50cos60cos70cos80×0×...cos900...cos1790
Multiplying the above values, we get
⇒0
Thus, the value of cos10cos20cos30...cos900...cos1790
is 0.
hope it helps you ✌️✅✅
Answer:
cos (10) + cos (20°) + cos (30°) + cos (40) + ... + cos (360°) = 0
Step-by-step explanation:
To find,
cos (10) + cos (20°) + cos (30°) + cos (40) + ... + cos (360°)
Recall the formula
cos (180 + Ф) = -cosФ
Solution:
cos (10) + cos (20°) + cos (30°) + cos (40) + ... + cos (360°)
= cos (10) + cos (20°) + cos (30°) + cos (40) + ... + cos (180°)+
+cos (180+10) + cos (180+20°) + cos (180+30°)+ ... + cos (180+180°)
Applying the formula cos (180 + Ф) = -cosФ
= cos (10) + cos (20°) + cos (30°) + cos (40) + ... + cos (180°)
-cos (10) - cos (20°) - cos (30°) - cos (40) + ... - cos (180°)
=0
∴cos (10) + cos (20°) + cos (30°) + cos (40) + ... + cos (360°) = 0
#SPJ2