Math, asked by Karthikgowdap, 10 months ago

48 sweets are to be distributed among three friends A,B and C in such a way that gets 5 sweets more then A and C gets 7 sweets more than A. Form a equation.​

Answers

Answered by aky0336sumit
18

Step-by-step explanation:

X+5+x+7+x= 48

3x+12 = 48

-12 +3x +12= 48- 12

3x /3= 36/3

X= 12

Therefore a gets 12 sweets, b gets 17 sweets and c gets 19 sweets.

Answered by Btwitsaditi12
6

n + n + 5 + n + 7 = 48 \\ 3n \:  +  \: 12 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 48 \\ 3n \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  = 48 - 12 \\ n \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  =  \frac{36}{3} =12 \\  \\  \\  \\ the \: equation \: formed \: is :  \\ n + n \:  + 5  +  n + 7 = 48 \\  \\  \\  \\  \\ (as \: obtained)  \:  \\ a\: would \: get \: 12.

b would get 17 and c would get 19.

Similar questions