Chemistry, asked by geetgrover2234, 1 year ago

48. when excess bacl2(aq) was added to a sample of fe(nh4)2(so4)2(aq) to determine the amount in moles of sulfate present, 5.02×10–3 mol of baso4 was obtained. how many moles of sulfate ions and iron ions were in the sample of fe(nh4)2(so4)2?

Answers

Answered by Chlidonias
9

Given the moles of BaSO_{4} is 5.023*10^{-3}.

The Balanced chemical reaction is

2BaCl_{2} +Fe(NH_{4})_{2}(SO_{4})_{2} -->2BaSO_{4}+Fe(NH_{4})_{2}Cl_{4}

Mole ratio of Fe(NH_{4})_{2}(SO_{4})_{2} to BaSO_{4}  is 1:2

Calculating the moles of Fe(NH_{4})_{2}(SO_{4})_{2} reacting with  5.023*10^{-[tex]</p><p>[tex]5.023*10^{-3} mol BaSO_{4}  *\frac{1 mol Fe(NH_{4})_{2}(SO_{4} )_{2}   }{2mol BaSO_{4} }

=0.00251 Fe(NH_{4})_{2}(SO_{4})_{2}

Calculating the moles of Fe:

0.00251 Fe(NH_{4})_{2}(SO_{4})_{2}*\frac{1mol Fe^{+2} }{1 mol Fe(NH_{4})(SO_{4})_{2}  }

=0.00251 molFe^{2+}

Calculating the moles of sulfate ion:

0.00251 Fe(NH_{4})_{2}(SO_{4})_{2}*\frac{2mol SO_{4} ^{-2} }{1 mol Fe(NH_{4})(SO_{4})_{2}  }

=0.005023 molSO_{4} ^{-2}


Answered by lohitjinaga
1

Answer:

Given the moles of BaSO_{4}BaSO

4

is 5.023*10^{-3}5.023∗10

−3

.

The Balanced chemical reaction is

2BaCl_{2} +Fe(NH_{4})_{2}(SO_{4})_{2} -- > 2BaSO_{4}+Fe(NH_{4})_{2}Cl_{4}2BaCl

2

+Fe(NH

4

)

2

(SO

4

)

2

−−>2BaSO

4

+Fe(NH

4

)

2

Cl

4

Mole ratio of Fe(NH_{4})_{2}(SO_{4})_{2}Fe(NH

4

)

2

(SO

4

)

2

to BaSO_{4}BaSO

4

is 1:2

Calculating the moles of Fe(NH_{4})_{2}(SO_{4})_{2}Fe(NH

4

)

2

(SO

4

)

2

reacting with 5.023*10^{-[tex] < /p > < p > [tex]5.023*10^{-3} mol BaSO_{4} *\frac{1 mol Fe(NH_{4})_{2}(SO_{4} )_{2} }{2mol BaSO_{4} }

=0.00251 Fe(NH_{4})_{2}(SO_{4})_{2}Fe(NH

4

)

2

(SO

4

)

2

Calculating the moles of Fe:

0.00251 Fe(NH_{4})_{2}(SO_{4})_{2}Fe(NH

4

)

2

(SO

4

)

2

*\frac{1mol Fe^{+2} }{1 mol Fe(NH_{4})(SO_{4})_{2} }∗

1molFe(NH

4

)(SO

4

)

2

1molFe

+2

=0.00251 molFe^{2+}Fe

2+

Calculating the moles of sulfate ion:

0.00251 Fe(NH_{4})_{2}(SO_{4})_{2}Fe(NH

4

)

2

(SO

4

)

2

*\frac{2mol SO_{4} ^{-2} }{1 mol Fe(NH_{4})(SO_{4})_{2} }∗

1molFe(NH

4

)(SO

4

)

2

2molSO

4

−2

=0.005023 molSO_{4} ^{-2}SO

4

−2

Similar questions