Physics, asked by soma448365, 6 months ago

49
1. A stone is thrown up from the earth's surface with an
initial velocity of 28 m.s-1, making an angle of 30°
with the horizontal. Find the maximum height attained
and the range of the projectile motion of the stone.​

Answers

Answered by Anonymous
88

Answer

Given

  • Intial velocity (u) = 28 m/s
  • Angle of projection (θ) = 30°

To find

  • Maximum height (H)
  • Horizonatal Range (R)

Solution

\bf\red{Calculating \:Maximum \:height (H)}

  • u = 28 m/s
  • θ = 30°
  • g = 9.8 m/s²

Substituting the value in formula :-

\boxed{\sf H = \frac{u^2sin^2\theta}{2g}}

\sf H = \frac{(28)^2sin^2 30}{2\times 9.8}

\sf H = \frac{(28)^2 \times sin^2 30}{2\times 9.8}

\sf H = \frac{784 \times  \frac{1}{4} }{19.6}

\sf H =  \frac{ \cancel{ 196}}{\cancel{ 19.6} }

\sf H = 10m

\boxed{\underline{\rm\purple{Maximum \:height = 10 m }}}

\bf\red{Calculating \:Horizontal \:Range (R)}

  • u = 28 m/s
  • θ = 30°
  • g = 9.8 m/s²

Substituting the value in formula :-

\boxed{\sf R = \frac{u^2sin2\theta}{g}}

\sf R =  \frac{(28)^2 \times sin(2 \times 30)}{9.8}

\sf R =  \frac{784 \times  \frac{ \sqrt{3} }{2} }{9.8}

\sf R =  \frac{ \cancel{ 392} \times  \sqrt{3} }{\cancel{ 9.8}}

\sf R =  40 \times  \sqrt{3}

\sf R = 69.28

\boxed{\underline{\rm\purple{Horizontal \:range= 69.28 m }}}

Similar questions