Math, asked by ajay5761, 1 year ago

49n + 16n –1 divisible by 64 for àll positive integers n.

Answers

Answered by krishgenius2585
2

Answer:

OK, I'm assuming anyone reading this will be familiar with the concept a mod b... If you're not, a mod b is the remainder you'd get dividing a by b. I'm going to use = for "congruent to" here...

What this boils down to proving is that:

49^n + 16n = 1 mod 64

Let's start with the easy stuff...

Power of 49 49^n mod 64

0 1

1 49

2 33

3 17

4 1

WELL! Now, THAT simplifies things a lot, doesn't it? The index of 49 mod 64 is merely 4...

Thus, for all n, let n = a mod 4. Then, we can say that

49^n = 49^a mod 64.

OK, now all we have to do is get this 16 n thing in there...

When you do that, you get:

49^n mod 64 49^ n + 16n mod 64

1 1

49 49 + 16 = 65

33 33 + 32 = 65

17 17 + 48 = 65

1 1 + 64 = 65

In all of these cases, subtract 1 and you get 64...

Similar questions