Math, asked by gharatved41, 9 days ago

(4a^2+6ab+9b^2)*(2a-3b)

Answers

Answered by sheeb12ansari
0

Given: The equation is(4a^2+6ab+9b^2)\times(2a-3b).

We have to solve the above equation.

By using the multiplication property, we are solving the above equation.

  • As we know that the multiplication is a method to get the product by multiplying two or more values.
  • Multiplication is denoted by the symbol(x).

Following are some properties of multiplication:

  1. Closure property of multiplication
  2. Commutative property of multiplication
  3. Associative property of multiplication
  4. Distributive property of multiplication over addition
  5. Identity property of multiplication
  6. Zero property of multiplication

We are solving in the following way:

We have,

(4a^2+6ab+9b^2)\times(2a-3b)

\begin{array}{l}=>\left(2 a \left(6 a b+4 a^{2}+9 b^{2}\right)+-3 b \left(6 a b+4 a^{2}+9 b^{2}\right)\right)=0 \\=>\left(\left(6 a b \times2 a+4 a^{2} \times2 a+9 b^{2} \times 2 a\right)+-3 b \times\left(6 a b+4 a^{2}+9 b^{2}\right)\right)=0\end{array}

\begin{array}{l}=>\left(\left(18 a b^{2}+12 a^{2} b+8 a^{3}\right)+-3 b{\times}\left(6 a b+4 a^{2}+9 b^{2}\right)\right)=0 \\=>\left(\left(18 a b^{2}+12 a^{2} b+8 a^{3}\right)+-3 b{\times}\left(6 a b+4 a^{2}+9 b^{2}\right)\right)=0 \\=>\left(18 a b^{2}+12 a^{2} b+8 a^{3}+\left(6 a b{\times}-3 b+4 a^{2} \times-3 b+9 b^{2} \times-3 b\right)\right)=0 \\=>\left(18 a b^{2}+12 a^{2} b+8 a^{3}+\left(-18 a b^{2}+-12 a^{2} b+-27 b^{3}\right)\right)=0\end{array}

=>\left(18 a b^{2}+-18 a b^{2}+12 a^{2} b+-12 a^{2} b+8 a^{3}+-27 b^{3}\right)=0\\\begin{array}{l}=>\left(0+12 a^{2} b+-12 a^{2} b+8 a^{3}+-27 b^{3}\right)=0 \\=>\left(12 a^{2} b+-12 a^{2} b+8 a^{3}+-27 b^{3}\right)=0\end{array}\\

Solving the above equation further we get,

8 a^{3}=27 b^{3}

Hence, the solution of the above equation is8 a^{3}=27 b^{3}

Similar questions