4a²+b²+4ab+8a+4b usin identity
Answers
Answered by
21
Group the terms as follows:
4a² + (4ab + 8a) + (b² + 4b + 4)
Factor each part separately:
(2a)² + 4a(b + 2) + (b + 2)²
Let u = 2a
Let v = b + 2
So you have:
u² + 2uv + v²
That's in the form of a perfect square:
(u + v)²
Answer:
(2a + b+2)²
4a² + (4ab + 8a) + (b² + 4b + 4)
Factor each part separately:
(2a)² + 4a(b + 2) + (b + 2)²
Let u = 2a
Let v = b + 2
So you have:
u² + 2uv + v²
That's in the form of a perfect square:
(u + v)²
Answer:
(2a + b+2)²
chotabhardwaj:
please give easy answer
Answered by
14
4a2 +b2 + 4ab +8a +4b [a2 +2ab+b2=(a+b)2]
=(2a+b)2 + 4(2a+b)
=(2a=b)(2a+b+4)
=(2a+b)2 + 4(2a+b)
=(2a=b)(2a+b+4)
Similar questions