4a³- 9a and 2a²+3a-9. find HCF and LCM.
Answers
ANSWER:
Given:
- 4a³ - 9a
- 2a² + 3a - 9
To Find:
- HCF and LCM
Solution:
We need to find the HCF and LCM of 4a³ - 9a and 2a² + 3a - 9.
So, we will factorize the expressions.
Factors of 4a³ - 9a:
⇒4a³ - 9a
Taking 'a' common,
⇒a(4a² - 9)
⇒a[(2a)² - (3)²]
As, (a² - b²) = (a + b)(a - b),
So,
⇒a[(2a + 3)(2a - 3)]
⇒a(2a + 3)(2a - 3)
Factors of 2a² + 3a - 9:
⇒2a² + 3a - 9
Splitting the middle term,
⇒2a² + 6a - 3a - 9
Taking common,
⇒2a(a + 3) - 3(a + 3)
⇒(a + 3)(2a - 3)
Now,
Common factors of 4a³ - 9a and 2a² + 3a - 9:
⇒(2a - 3)
So,
⇒HCF = Highest Common Factor
So,
⇒HCF of 4a³ - 9a and 2a² + 3a - 9 = 2a - 3
Now,
All factors of 4a³ - 9a and 2a² + 3a - 9:
⇒a, (2a + 3), (2a - 3), (a + 3)
(We took common factor only once)
So,
⇒LCM = Least Common Multiple
So,
⇒LCM = a(2a + 3)(2a - 3)(a + 3)
⇒LCM = [a(2a + 3)(2a - 3)]×(a + 3)
⇒LCM = (4a³ - 9a)(a + 3)
⇒LCM of 4a³ - 9a and 2a² + 3a - 9 = 4a⁴ + 12a³ - 9a² - 27a