Math, asked by karthik18082006, 11 months ago

4cos^3 - 3sin50 pls answer this question

Answers

Answered by sprao53413
16

Answer:Sin 50°=Sin(90-40)=Cos 40°

4 Cos^3(40)-3 Cos 40= Cos3(40)=

Cos 120°=-1/2

Answered by ushmagaur
1

Correct Question: Find the value of 4cos^3 40^{0}-3sin50^0.

Answer:

The value of the trigonometric function 4cos^3 40^{0}-3sin50^0 is -\frac{1}{2}.

Step-by-step explanation:

Consider the trigonometric function as follows:

4cos^3 40^{0}-3sin50^0 ...... (1)

We know that cos(90^0- x)=sinx

Then equation (1) can be written as,

4cos^3 40^{0}-3sin50^0 = 4cos^3 40^{0}-3cos(90-50)

                              = 4cos^3 40^{0}-3cos40^0 ...... (2)

Now, using the identity, cos3x=4cos^3x-3cosx, i.e.,

4cos^3x=cos3x+3cosx

Substitute the value cos3x+3cosx for 4cos^3x in the equation (2) as follows:

4cos^3 40^{0}-3sin50^0= cos3 (40)^0+3cos40^0-3cos40^0

Simplify as follows:

4cos^3 40^{0}-3sin50^0= cos120^0

4cos^3 40^{0}-3sin50^0= -\frac{1}{2} (Since cos120^0=-\frac{1}{2})

Therefore, the value of  the trigonometric function 4cos^3 40^{0}-3sin50^0 is -\frac{1}{2}.

#SPJ3

Similar questions