Math, asked by douda2391, 1 year ago

4cos^3 45 - 3cos 45+ sin45

Answers

Answered by RakhiBhedke
24

Step-by-step explanation:

4 cos^3 45° - 3 cos 45° + sin 45°

=>  4 (\frac{1}{\sqrt{2}})^3 - 3 (\frac{1}{\sqrt{2}}) + \frac{1}{\sqrt{2}}

=>  4 (\frac{1}{2\sqrt{2}}) - \frac{3}{2} + \frac{1}{\sqrt{2}}

=>  \cancel{4} (\frac{1}{\cancel{2}\sqrt{2}}) - \frac{3}{2} + \frac{1}{\sqrt{2}}

=>  2(\frac{1}{\sqrt{2}}) - \frac{3}{2} + \frac{1}{\sqrt{2}}

=>  \cancel{2}({\frac{1}{\cancel{\sqrt{2}}}}) - \frac{3}{2} + \frac{1}{\sqrt{2}}

=>  \sqrt{2} - \frac{3}{2} + \frac{1}{\sqrt{2}}

=>  \sqrt{2} - \frac{3\sqrt{2} + 2}{2\sqrt{2}}

=>  \sqrt{2} - \frac{(\sqrt{2})(-3 + \sqrt{2})}{2\sqrt{2}}

=>  \sqrt{2} \: \frac{-3 + \sqrt{2}}{2}

=>  \frac{ - 3 + \sqrt{2} - 2 \sqrt{2}}{2}

=>  \frac{(\sqrt{2})(2 - 3)}{2}

=>  \frac{\cancel{\sqrt{2}}(2-3)}{\cancel{2}}

=>  \large{\boxed{\pink{\frac{-1}{\sqrt{2}}}}}

Similar questions