Math, asked by ujwalpadala, 11 months ago

4cos12°cos48°-cos72°​

Answers

Answered by poonamsingh1050
0

Answer:

To prove : 4 \cos 12^\circ \cos 48^\circ \cos 72^\circ = \cos 36^\circ4cos12

cos48

cos72

=cos36

Proof :

Taking LHS,

4 \cos 12^\circ \cos 48^\circ \cos 72^\circ4cos12

cos48

cos72

=(2\cos 48^\circ \cos 12^\circ)\times 2\cos 72^\circ=(2cos48

cos12

)×2cos72

Using identity, 2\cos A\cos B=\cos(A+B)+\cos(A-B)2cosAcosB=cos(A+B)+cos(A−B)

=(\cos (48+12)^\circ+\cos (48-12)^\circ)\times 2\cos 72^\circ=(cos(48+12)

+cos(48−12)

)×2cos72

=(\cos (60)^\circ+\cos (36)^\circ)\times 2\cos 72^\circ=(cos(60)

+cos(36)

)×2cos72

=(\frac{1}{2}+\cos (36)^\circ)\times 2\cos 72^\circ=(

2

1

+cos(36)

)×2cos72

=\cos 72+2\cos 72^\circ\cos (36)^\circ=cos72+2cos72

cos(36)

=\cos 72+\cos (72+36)^\circ+\cos (72-36)^\circ=cos72+cos(72+36)

+cos(72−36)

=\cos 72+\cos (108)^\circ+\cos (36)^\circ=cos72+cos(108)

+cos(36)

Using identity, \cos C+\cos D=2\cos\frac{(C+D)}{2}\cos\frac{(C-D)}{2}cosC+cosD=2cos

2

(C+D)

cos

2

(C−D)

=2\cos \frac{(108+72)}{2}\cos \frac{(108-72)}{2}+\cos (36)^\circ=2cos

2

(108+72)

cos

2

(108−72)

+cos(36)

=2\cos \frac{180}{2}\cos \frac{36}{2}+\cos (36)^\circ=2cos

2

180

cos

2

36

+cos(36)

=2\cos 90\cos 18+\cos (36)^\circ=2cos90cos18+cos(36)

=2\times 0\times \cos 18+\cos (36)^\circ=2×0×cos18+cos(36)

=\cos (36)^\circ=cos(36)

=RHS

Hence proved.

Similar questions