4cos²xsinx-2sin²x=3sinx
solve for x
aswintrichy:
what
Answers
Answered by
1
4 cos² x sin x - 2 sin² x = 3 sin x
if sinx is 0 then x = 2 n π , n = natural number
if sinx is not 0 then, cancel sin x on both sides,
4 cos² x - 2 sin x = 3
4 - 4 sin² x - 2 sin x - 3 =0
4 sin² x + 2 sin x -1 = 0
Δ = 4 + 16 = 20
sin x = (-2 +- 2√5) / 8 = (-1 +- √5) / 4 =
x = 2 n π + 18 deg or 2 n π (- 54 deg = 126 deg)
if sinx is 0 then x = 2 n π , n = natural number
if sinx is not 0 then, cancel sin x on both sides,
4 cos² x - 2 sin x = 3
4 - 4 sin² x - 2 sin x - 3 =0
4 sin² x + 2 sin x -1 = 0
Δ = 4 + 16 = 20
sin x = (-2 +- 2√5) / 8 = (-1 +- √5) / 4 =
x = 2 n π + 18 deg or 2 n π (- 54 deg = 126 deg)
Answered by
3
4cos²xsinx-2sin²x = 3sinx
4(1-sin²x)sinx-2sin²x = 3sinx
4sinx-4sin³x-2sin²x = 3sinx
4sin³x+2sin²x-sinx = 0
sinx(4sin²x+2sinx-1) = 0
sinx = 0 or 4sin²x+2sinx-1 = 0
x = 0 or sinx = {-2+-√(2²-4*4*(-1))}/2*4
x = 0 or sinx = (-1+-√5)/4
x = 0 or sinx = (-1-√5)/4 or sinx = (-1+√5)/4
x = 0 or x = sin^-1{(-1-√5)/4} or x = sin^-1{(-1+√5)/4}
there is no boundary condition on x so general solution of x is
x = (nπ+(-1)^n 0) or x = [nπ+(-1)^n sin^-1{(-1-√5)/4}] or (where n is an integer)
x = [nπ+(-1)^n sin^-1{(-1+√5)/4}]
hence
x = nπ or
x = [nπ+(-1)^n sin^-1{(-1-√5)/4}] or
x = [nπ+(-1)^n sin^-1{(-1+√5)/4}]
4(1-sin²x)sinx-2sin²x = 3sinx
4sinx-4sin³x-2sin²x = 3sinx
4sin³x+2sin²x-sinx = 0
sinx(4sin²x+2sinx-1) = 0
sinx = 0 or 4sin²x+2sinx-1 = 0
x = 0 or sinx = {-2+-√(2²-4*4*(-1))}/2*4
x = 0 or sinx = (-1+-√5)/4
x = 0 or sinx = (-1-√5)/4 or sinx = (-1+√5)/4
x = 0 or x = sin^-1{(-1-√5)/4} or x = sin^-1{(-1+√5)/4}
there is no boundary condition on x so general solution of x is
x = (nπ+(-1)^n 0) or x = [nπ+(-1)^n sin^-1{(-1-√5)/4}] or (where n is an integer)
x = [nπ+(-1)^n sin^-1{(-1+√5)/4}]
hence
x = nπ or
x = [nπ+(-1)^n sin^-1{(-1-√5)/4}] or
x = [nπ+(-1)^n sin^-1{(-1+√5)/4}]
Similar questions