Math, asked by ParnikaD, 11 months ago

4cosx cos (pi/3-x) cos (pi/3+x) = cos 3x. prove​

Answers

Answered by Anonymous
94

Step-by-step explanation:

=4cosx*cos(60-x)*cos(60+x)

=4cosx*(cos60*cosx+sin60*sinx)* (cos60*cosx-sin60*sinx)

= 4cosx*(cosx/2 + 3½sinx/2)*(cosx/2 - 3½sinx/2)

= 4cosx*(cos²x/4 - 3sin²x/4)

= 4cosx*(cos²x - 3sin²x)/4

= cosx (cos²x - 3sin²x)

= cosx (cos²x - 3(1-cos²x))

= cosx (cos²x - 3 + 3cos²x)

= cosx (4cos²x - 3)

= 4cos³x - 3cosx

चूँकि ,( cos3x = 4cos³x - 3cosx)

= cos3x (hence proof)

Answered by bharatbijou
32

Answer:

4cosx.cos(60+x).cos(60-x)=cos3x

LHS. 2cosx.[2cos(60+x).cos(60-x)]

=2cosx[cos(60+x+60-x)+cos(60+x-60+x)]

=2cosx[cos 120+cos 2x]

=2cos x[ -1/2 +cos 2x]

=-cos x+2cos 2x.cos x

=-cos x +cos (2x+x) +cos(2x-x)

=-cos x+cos 3x +cos x

=cos 3x proved.

Step-by-step explanation:

Similar questions