Math, asked by XxItzAmeyaxX, 4 months ago

4m (3n-5)+(3n-5)​ Factorise by taking out the common factor

❌No irrelevant answers ❌

Need the whole procedure ✅​

Answers

Answered by SaiReshmi
4

Answer:

(3n-5) (4m+1)

Step-by-step explanation:

tep1: Remove parentheses

\implies\textsf{4m (3n - 5) + 3n - 5}⟹4m (3n - 5) + 3n - 5

\textsf{Step\:2:}Step2: Simplify each term

Apply the distributive property

\implies\textsf{4m (3n) + 4m × -5 + 3n - 5}⟹4m (3n) + 4m × -5 + 3n - 5

Rewrite using commutive property of multiplication

\implies\textsf{4 × 3mn + 4m × -5 + 3n - 5}⟹4 × 3mn + 4m × -5 + 3n - 5

Multiply -5 by 4

\implies\textsf{4 × 3mn - 20m + 3n - 5}⟹4 × 3mn - 20m + 3n - 5

Multiply 4 by 3

\implies\textsf{12mn - 20m + 3n - 5}⟹12mn - 20m + 3n - 5

\textsf{Step\:3:}Step3: Factor out the greatest common factor from each group

Group the first two terms and the last two terms

\implies\textsf{(12mn - 20m) + 3n - 5}⟹(12mn - 20m) + 3n - 5

Factor out the greatest common factor (GCF) from each group

\implies\textsf{4m (3n - 5) + 1 (3n - 5)}⟹4m (3n - 5) + 1 (3n - 5)

\textsf{Lastly:}Lastly: Factor the polynomial by factoring out the greatest common factor, 3n - 5

\green\implies\textsf\green{(3n - 5) (4m + 1)}⟹(3n - 5) (4m + 1)

Similar questions