4m (3n-5)+(3n-5) Factorise by taking out the common factor
❌No irrelevant answers ❌
Need the whole procedure ✅
Answers
Answer:
(3n-5) (4m+1)
Step-by-step explanation:
tep1: Remove parentheses
\implies\textsf{4m (3n - 5) + 3n - 5}⟹4m (3n - 5) + 3n - 5
\textsf{Step\:2:}Step2: Simplify each term
Apply the distributive property
\implies\textsf{4m (3n) + 4m × -5 + 3n - 5}⟹4m (3n) + 4m × -5 + 3n - 5
Rewrite using commutive property of multiplication
\implies\textsf{4 × 3mn + 4m × -5 + 3n - 5}⟹4 × 3mn + 4m × -5 + 3n - 5
Multiply -5 by 4
\implies\textsf{4 × 3mn - 20m + 3n - 5}⟹4 × 3mn - 20m + 3n - 5
Multiply 4 by 3
\implies\textsf{12mn - 20m + 3n - 5}⟹12mn - 20m + 3n - 5
\textsf{Step\:3:}Step3: Factor out the greatest common factor from each group
Group the first two terms and the last two terms
\implies\textsf{(12mn - 20m) + 3n - 5}⟹(12mn - 20m) + 3n - 5
Factor out the greatest common factor (GCF) from each group
\implies\textsf{4m (3n - 5) + 1 (3n - 5)}⟹4m (3n - 5) + 1 (3n - 5)
\textsf{Lastly:}Lastly: Factor the polynomial by factoring out the greatest common factor, 3n - 5
\green\implies\textsf\green{(3n - 5) (4m + 1)}⟹(3n - 5) (4m + 1)