Math, asked by smart5760, 6 months ago

4m + 6n = 54 3m + 2n = 28 D = 4 6 3 2 = (4 × 2) - (6 × 3) = 8 - 18 ∴ D =_____ Dm = 54 6 28 2 = (54 × 2) - (6 × 28) = 108 -168 ∴ Dm = _____ Dn = 4 54 3 28 = (4 ×28) - (54 × 3) = 112 - 162 ∴ Dn = _____ By Cramer's rule m = Dm D = _____ = 6 and 12 n 12 2 | | | | | | n = _____ = −50 −10 = 5 ∴ m = _____, n = _____is the solution of given simultaneous equations

Answers

Answered by pulakmath007
0

SOLUTION

GIVEN

4m + 6n = 54

3m + 2n = 28

TO DETERMINE

To fill in the blanks using Cramer's rule

EVALUATION

Here the given system of equations are

4m + 6n = 54

3m + 2n = 28

Thus we get

\displaystyle \sf{D= \begin{vmatrix} 4& 6 \\ 3 & 2 \end{vmatrix} }

\displaystyle \sf{ \implies \: D = (4 \times 2) - (3 \times 6) }

\displaystyle \sf{ \implies \: D  = 8 - 18 }

\displaystyle \sf{ \implies \: D = - 10}

D = - 10

\displaystyle \sf{D_ m= \begin{vmatrix} 54& 6 \\ 28 & 2 \end{vmatrix} }

\displaystyle \sf{ \implies \: D_m = (54 \times 2) - (28 \times 6) }

\displaystyle \sf{ \implies \: D_m = 108 - 168 }

\displaystyle \sf{ \implies \: D_m =  - 60}

\displaystyle \sf{ \therefore \:  \:  \: D_m =  - 60}

\displaystyle \sf{D_ n= \begin{vmatrix} 4& 54 \\ 3 & 28 \end{vmatrix} }

\displaystyle \sf{ \implies \: D_n = (4 \times 28) - (54 \times 3) }

\displaystyle \sf{ \implies \: D_n = 112 - 162}

\displaystyle \sf{ \implies \: D_n =  - 50}

\displaystyle \sf{ \therefore \:  \: D_n =  - 50}

By Cramer's rule we get

\displaystyle \sf{m = \frac{D_ m}{D}  =  \frac{ - 60}{ - 10}  = 6 }

\displaystyle \sf{n = \frac{D_ n}{D}  =  \frac{ - 50}{ - 10}  = 5 }

m = 6 , n = 5 is the solution of given simultaneous equations

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. The eigen values of the matrix A are 2,3,5. Then the eigen values of adj A are

https://brainly.in/question/31051731

2. let A and B are square matrices such that AB=I then zero is an eigen value of

https://brainly.in/question/24255712

Similar questions