Physics, asked by rupsabasu869, 7 months ago

4MUM
52. A body cools from 67°C to 37°C. If this takes time t when the surrounding temperature is 27°C,
what will be the time taken if the surrounding temperature is 7°C?
A 21
B. t/3
C. 1/2
D. t/4
ths.
made of the same material and having the same area of cross-section
please give me a detailed solution​

Answers

Answered by Anonymous
5

Answer:

 \boxed{\mathfrak{(c) \ \frac{t}{2}}}

Explanation:

Initial temperature ( \rm T_i ) = 67°C

Final temperature ( \rm T_f ) = 37°C

Time taken for cooling when surrounding temperature is 27°C = t

Let time taken for cooling when surrounding temperature is 7°C be t'

From Netwon's Law of Cooling we have:

 \boxed{ \bold{\frac{T_i - T_f}{t} \propto (\frac{T_i + T_f}{2} - T_o)}}

 \rm T_o \longrightarrow Surrounding temperature

So, by using Netwon's Law of Cooling we get:

 \rm \implies  \dfrac{67  - 37 }{t}  \propto (\dfrac{67  + 37 }{2}  - 27 ) \:  \:  \:  \:  \: ...eq_1 \\  \\  \rm \implies  \dfrac{67  - 37 }{t'}  \propto (\dfrac{67  + 37 }{2}  - 7 ) \:  \:  \:  \:  \: ...eq_2

Dividing  \rm eq_1 by  \rm eq_2 we get:

 \rm \implies  \dfrac{\dfrac{ \cancel{67  - 37 }}{t} }{\dfrac{ \cancel{67  - 37} }{t'} } =  \dfrac{(\dfrac{67  + 37 }{2}  - 27 )}{(\dfrac{67  + 37 }{2}  - 7 )}  \\  \\  \rm \implies  \dfrac{t'}{t}  =  \dfrac{52 - 27}{52 - 7}  \\  \\ \rm \implies  \dfrac{t'}{t}  = d\frac{25}{45}  \\  \\ \rm \implies  \dfrac{t'}{t}   \approx \dfrac{1}{2}  \\  \\ \rm \implies  t'   \approx \frac{t}{2}

Similar questions