Math, asked by MTushar1522, 5 months ago

4n^2+88n-532=0 solve this quadratic equation​

Answers

Answered by hammadjavaidali
0

Answer:

786556

Step-by-step explanation:

Answered by mathdude500
0

Question :-

  • Solve the quadratic:- 4n² + 88n - 532 = 0.

Answer

Given :-

  • A quadratic equation 4n² + 88n - 532 = 0.

To find :-

  • Value of n

Method used :-

Quadratic Formula

If ax² + bx + c = 0 be a quadratic equation, then

\bf \:x = \dfrac{ - b \: ± \:  \sqrt{ {b}^{2} - 4ac } }{2a}

Solution :-

Consider 4n² + 88n - 532 = 0

Divide by 4, we get

\bf\implies \:n² + 22n - 133= 0.

Here, a = 1, b = 22, c = - 133

So, using quadratic formula, we get

\bf \:n = \dfrac{ - 22 \: ± \:  \sqrt{ {22}^{2} - 4 \times 1 \times ( - 133) } }{2 \times 1}

\bf\implies \:n = \dfrac{ - 22 \: ± \:  \sqrt{484 + 532} }{2}

\bf\implies \:n = \dfrac{ - 22 \: ± \:  \sqrt{1016} }{2}

\bf\implies \:n = \dfrac{ - 22 \: ± \:  \sqrt{2 \times 2 \times 2 \times 127} }{2}

\bf\implies \:n = \dfrac{ - 22 \: ± 2\:  \sqrt{254} }{2}

\bf\implies \:n = 11 \: ± \:  \sqrt{254}

__________________________________________

Similar questions