Math, asked by baborancfahma, 1 year ago

4nC2n : 2nCn = [1.3.5...(4n-1)] : [1.3.5...(2n-1)]^2

Answers

Answered by tahannus
22
Given 2nC=  (2n)! / n! n!

= (2n)! / (n!)2

= (2n) ( 2n - 1) (2n - 2) -----------4.3.2.1 / (n!)2

= 2xn ( 2n - 1) 2 ( n - 1) -----------------2x2.3.2x1.1 / (n!)2

= 2n [n(n - 1)(n - 2)(n -3) ----------3 x2 x1][(2n -1)(2n -3) ---------------5x3x1] / (n!)2

= 2n n! [(2n -1)(2n -3) ---------------5x3x1] / (n!)2

= 2n  [(2n -1)(2n -3) ---------------5x3x1] / (n!)

= 2n[ 1x3x5 -----------------(2n -3)(2n -1)] / (n!)
Answered by mishtirimjha
5

Answer:

4nC2n:2nCn=[1.3.5.....(4n-1)]:[1.3.5.....(2n-1)]

from LHS

4nC2n :2ncn=4nC2n/2nCn

=4n!/(4n-2n)! 2n! /2n! /(2n-n)!n!

=4n! n! n! /2n! 2n! 2n!

=[4n(4n-1)(4n-2)......3.2.1] n! n!

2n! 2n! 2n!

=[1.3.5...(4n-1) ](2.4.6.....4n)n!n!

2n! 2n! 2n!

=[1.3.5...(4n-1)] 2^(2n)*(1.2.3......2n)n! n!

2n! 2n! 2n!

=2^(2n)[1.3.5...(4n-1)] 2n! n! n!

2n! 2n! 2n!

=2^(2n)[1.3.5...(4n-1)]n! n!

2n! 2n!

= 2^(2n)[1.3.5...(4n-1)]n! n!

[1.3.5...(2n-1)]^2*(2.4.6.....2n)^2

= 2^(2n)[1.3.5...(4n-1)]n! n!

[1.3.5...(2n-1)]^2*2^2n[1.2.3....n]^2

= 2^(2n)[1.3.5...(4n-1)]n! n!

[1.3.5...(2n-1)]^2*2^(2n)*n!n!

= [1.3.5...(4n-1)] =RHS

[1.3.5...(2n-1)]^2

hence proved.

Attachments:
Similar questions