Math, asked by vasubajaj50, 5 hours ago

4root(81)-power2 is equal too​

Answers

Answered by anagha30g
0

Step-by-step explanation:

The value of expression is (\sqrt[4]{81})^{-2}=\frac{1}{9}(481)−2=91

Step-by-step explanation:

Given : Expression (\sqrt[4]{81})^{-2}(481)−2

To find : The value of the expression ?

Solution :

Expression (\sqrt[4]{81})^{-2}(481)−2

We can write 81 as 3^434 ,

(\sqrt[4]{81})^{-2}=(\sqrt[4]{3^{4}})^{-2}(481)−2=(434)−2

(\sqrt[4]{81})^{-2}=(3^{\frac{4}{4}})^{-2}(481)−2=(344)−2

(\sqrt[4]{81})^{-2}=(3^{1})^{-2}(481)−2=(31)−2

(\sqrt[4]{81})^{-2}=(3)^{-2}(481)−2=(3)−2

(\sqrt[4]{81})^{-2}=\frac{1}{3^2}(481)−2=321

(\sqrt[4]{81})^{-2}=\frac{1}{9}(481)−2=91

Therefore, the value of expression is (\sqrt[4]{81})^{-2}=\frac{1}{9}(481)−2

Similar questions