4root(81)-power2 is equal too
Answers
Answered by
0
Step-by-step explanation:
The value of expression is (\sqrt[4]{81})^{-2}=\frac{1}{9}(481)−2=91
Step-by-step explanation:
Given : Expression (\sqrt[4]{81})^{-2}(481)−2
To find : The value of the expression ?
Solution :
Expression (\sqrt[4]{81})^{-2}(481)−2
We can write 81 as 3^434 ,
(\sqrt[4]{81})^{-2}=(\sqrt[4]{3^{4}})^{-2}(481)−2=(434)−2
(\sqrt[4]{81})^{-2}=(3^{\frac{4}{4}})^{-2}(481)−2=(344)−2
(\sqrt[4]{81})^{-2}=(3^{1})^{-2}(481)−2=(31)−2
(\sqrt[4]{81})^{-2}=(3)^{-2}(481)−2=(3)−2
(\sqrt[4]{81})^{-2}=\frac{1}{3^2}(481)−2=321
(\sqrt[4]{81})^{-2}=\frac{1}{9}(481)−2=91
Therefore, the value of expression is (\sqrt[4]{81})^{-2}=\frac{1}{9}(481)−2
Similar questions