4sin Asin (A+π/3) sin(A+2π/3)=Sin3A
Answers
Answered by
17
To prove:- 4sinAsin (A+π/3) sin(A+2π/3)=3sinA
Proof:- Firstly let's solve LHS.
→2 Sin A [2 Sin (A+2 π/3) Sin(A+π/3)]
→ 2 Sin A [Cos (A+ 2 π/3 -A - π/3) Cos (A+ 2 Pπ/3 + A+π/3)] .... {Since we know Cos (A-B) Cos (A+B) = 2 Sin A sin B}
In this question for the values of A and B we have,
A=A+2π/3
A=A+2π/3B=A+π/3
So,
→2 sin A [(Cos π/3) {Cos (2 A + π)}]
→2 sin A [Cos π/3 (Cos 2A Cos πSin 2A Sin π)
→2 Sin A [Cos π/3 {Cos 2A (-1) Sin 2A (0)}]
→2 Sin A [Cos π/3 {-(cos2A)}]
→2 Sin A Cos π /3 +2 Sin A Cos 2A
→2 Sin A (1/2) + Sin (2A+ A) - Sin (2A A)
→Sin A + Sin 3A (SinA)
→Sin3A
Therefore,LHS=RHS
Hence proved!!
Remember two properties:-
☞Cos (A-B) Cos (A+B) = 2 Sin A sin B
☞2 Sin A Cos B = Sin (A+B) Sin (A-B)]
Similar questions