4sinxsin(π/3- x) sin (π/3+x) = sin3x
please someone tell me answer to this question
Answers
Answered by
3
Answer:
Given, 4 * sin x * sin(x + π/3) * sin(x + 2π/3)
= 4 * sin x * {sin x * cos π/3 + cos x * sin π/3} * {sin x * cos 2π/3 + cos x * sin 2π/3}
= 4 * sin x * {(sin x)/2 + (√3 * cos x)/2} * {-(sin x)/2 + (√3 *cos x)/2}
= 4 * sin x * {-(sin2 x)/4 + (3 * cos2 x)/4}
= sin x * {-sin2 x + 3 * cos2 x}
= sin x * {-sin2 x + 3 * (1 - sin2 x)}
= sin x * {-sin2 x + 3 - 3 * sin2 x}
= sin x * {3 - 4 * sin2 x}
= 3* sin x - 4sin3 x
= sin 3x
So, 4 * sin x * sin(x + π/3) * sin(x + 2π/3) = sin 3x
Similar questions