4tan theta =3 evaluate (4sin theta - cos theta +1)
Answers
Answered by
5
4tanθ = 3 so, tanθ = 3/4
we know, tanθ = perpendicular/base
tanθ = 4/3 = perpendicular/base
So, perpendicular = 3 and base = 4
Now use Pythagoras theorem to find hypotenuse
Hypotenuse =
∴ hypotenuse = √(3² + 4²) = √(25) = 5
Now, sinθ = perpendicular/hypotenuse = 3/5
cosθ = base/hypotenuse = 4/5
now, (4sinθ - cosθ + 1)
= 4 × 3/5 - 4/5 + 1
= 12/5 - 4/5 + 1
= 8/5 + 1
= 1.6 + 1
= 2.6
Hence, (4sinθ - cosθ + 1) = 2.6
we know, tanθ = perpendicular/base
tanθ = 4/3 = perpendicular/base
So, perpendicular = 3 and base = 4
Now use Pythagoras theorem to find hypotenuse
Hypotenuse =
∴ hypotenuse = √(3² + 4²) = √(25) = 5
Now, sinθ = perpendicular/hypotenuse = 3/5
cosθ = base/hypotenuse = 4/5
now, (4sinθ - cosθ + 1)
= 4 × 3/5 - 4/5 + 1
= 12/5 - 4/5 + 1
= 8/5 + 1
= 1.6 + 1
= 2.6
Hence, (4sinθ - cosθ + 1) = 2.6
Similar questions
English,
7 months ago
Business Studies,
7 months ago
Accountancy,
7 months ago
Math,
1 year ago
Math,
1 year ago
Math,
1 year ago