Math, asked by vaishukaza, 8 months ago

4th term of an A.P. is 16 and the 9th term is 31, find the first 5 terms

Answers

Answered by Anonymous
5

 \large\bf\underline{Given:-}

  • 4th term = 16
  • 9th term = 31

 \large\bf\underline {To \: find:-}

  • first five terms of AP.

 \huge\bf\underline{Solution:-}

 \large \bf \: T_n = a+(n-1)d \\  \rm \: T_{4} = a+3d \\   \rm \: T_9 = a + 8d

 \large \bf \: T_n = a+(n-1)d \\  \\  \rm \: T_{4} = a+3d \\   \\   \rm \dashrightarrow \rm \: a + 3d = 16 ........(i)\\  \\  \dashrightarrow \rm \:T_{9} = a+8d \\  \\ \: \dashrightarrow \rm \: a + 8d = 31.......(ii)

From (i) and (ii)

\boxed{ \begin{minipage}{4cm} a + 3d = 16 \\ a + 8d = 31 \\ - \:  \:  \:    -  \:  \:  \:  -   \\   \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }  \\ \: . \:  - 5d  \:  \:  =  -  15 \\  . \: \: d  \:  \:    = \bf  3 \end{minipage}}

Putting value of d = 3 in equation (i)

 \rm \dashrightarrow \: a + 3d = 16 \\  \\ \rm \dashrightarrow \: a + 3 \times 3 = 16 \\  \\ \rm \dashrightarrow \: a + 9 = 16 \\  \\ \rm \dashrightarrow \: a = 16 - 9 \\  \\ \rm \dashrightarrow \: a = 7

  • common difference (d) = 3
  • First term (a) = 7

\boxed{ \begin{minipage}{4cm}first \: term \:  = a  \\ second \: term = a + d \\  third \: term = a + 2d  \\ fourth \: term \: a + 3d \\ fifth \: term \:  = a + 4d\end{minipage}}

So,

First term = 7

second term = 7+3 = 10

third term = 7+ 2×3 = 13

fourth term = 7+3×3 = 16

fifth term = 7+4×3 = 19

the first 5 terms are :- 7 , 10, 13 ,16 ,19.

Answered by Anonymous
1

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ first \ five \ terms \ of \ the \ AP}

\sf{are \ 7, \ 10, \ 13, \ 16 \ and \ 19.}

\sf\orange{Given:}

\sf{\implies{t_{4}=16}}

\sf{\implies{t_{9}=31}}

\sf\pink{To \ find:}

\sf{First \ five \ terms \ of \ an \ AP.}

\sf\green{\underline{\underline{Solution:}}}

\boxed{\sf{tn=a+(n-1)d}}

\sf{According \ to \ the \ first \ condition.}

\sf{t_{4}=a+(4-1)d}

\sf{\therefore{16=a+3d}}

\sf{\therefore{a+3d=16...(1)}}

\sf{According \ to \ the \ second \ condition.}

\sf{t_{9}=a+(9-1)d}

\sf{\therefore{31=a+8d}}

\sf{\therefore{a+8d=31...(2)}}

\sf{Subtract \ equation (1) \ from \ equation (2)}

\sf{a+8d=31}

\sf{-}

\sf{a+3d=16}

___________________

\sf{5d=15}

\sf{\therefore{d=\frac{15}{5}}}

\boxed{\sf{\therefore{d=3}}}

\sf{Substitute \ d=3 \ in \ equation (1)}

\sf{a+3(3)=16}

\sf{\therefore{a+9=16}}

\sf{\therefore{a=16-9}}

\boxed{\sf{\therefore{a=7}}}

\sf{The \ required \ terms \ are:}

\sf{\implies{t_{1}=a=7,}}

\sf{\implies{t_{2}=a+d=7+3=10,}}

\sf{\implies{t_{3}=a+2d=7+2(3)=13,}}

\sf{\implies{t_{4}=a+3d=7+3(3)=16,}}

\sf{\implies{t_{5}=a+4d=7+4(3)=19}}

\sf\purple{\tt{\therefore{The \ first \ five \ terms \ of \ the \ AP}}}

\sf\purple{\tt{are \ 7, \ 10, \ 13, \ 16 \ and \ 19.}}

Similar questions