Math, asked by pritipratikhya6, 10 months ago

4x^2+3x+5=0, solve using completing the square root . Class-10

Answers

Answered by sishita753
0

Answer:

4x^2+3x+5=0

(2x)^2+2*2x*3/4+(3/4)^2-(3/4)^2+5=0

(2x+3/4)^2+71/16=0

Answered by Anonymous
4

\sf\red{\underline{\underline{Answer:}}}

\sf{Roots \ are \ \frac{-3+\sqrt{-71}}{8} \ and \ \frac{-3-\sqrt{-71}}{8}}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ equation \ is}

\sf{4x^{2}+3x+5=0}

\sf\pink{To \ find:}

\sf{The \ roots \ of \ the \ equation.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{4x^{2}+3x+5=0}}

\sf{Dividing \ the \ equation \ throughout \ by \ 4.}

\sf{\implies{x^{2}+\frac{3x}{4}+\frac{5}{4}=0}}

\sf{\implies{x^{2}+\frac{3x}{4}=\frac{-5}{4}}}

_______________________________

\sf{(Coefficient \ of \ x\times\frac{1}{2})^{2}}

\sf{=>(\frac{3}{4}\times\frac{1}{2})^{2}}

\sf{=>(\frac{3}{8})^{2}}

\sf{=>\frac{9}{64}}

_______________________________

\sf{Add \ \frac{9}{64} \ on \ both \ sides \ of \ equation}

\sf{\implies{x^{2}+\frac{3x}{4}+\frac{9}{64}=\frac{-5}{4}+\frac{9}{64}}}

\sf{\implies{(x+\frac{3}{8})^{2}=\frac{-80+9}{64}}}

\sf{\implies{(x+\frac{3}{8})^{2}=\frac{-71}{64}}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\implies{x+\frac{3}{8}=\frac{\sqrt{-71}}{8} \ or \ -\frac{\sqrt{-71}}{8}}}

\sf{\implies{x=\frac{-3}{8}+\frac{\sqrt{-71}}{8} \ or \ \frac{-3}{8}-\frac{\sqrt{-71}}{8}}}

\sf{\implies{x=\frac{-3+\sqrt{-71}}{8} \ or \ \frac{-3-\sqrt{-71}}{8}}}

\sf\purple{\tt{\therefore{Roots \ are \ \frac{-3+\sqrt{-71}}{8} \ and \ \frac{-3-\sqrt{-71}}{8}}}}

Similar questions