Math, asked by nathpanchomi, 24 days ago

(4x^2+3y) (3x^2- 4y)​

Answers

Answered by Anonymous
3

Answer:

To multiply

\sf{(4 {x}^{2} + 3y)(3 {x}^{2} - 4y) }(4x

2

+3y)(3x

2

−4y)

TO verify the result for x = 1 & y = 2

EVALUATION

MULTIPLICATION

\sf{(4 {x}^{2} + 3y)(3 {x}^{2} - 4y) }(4x

2

+3y)(3x

2

−4y)

= \sf{4 {x}^{2}(3 {x}^{2} - 4y) + 3y(3 {x}^{2} - 4y)}=4x

2

(3x

2

−4y)+3y(3x

2

−4y)

= \sf{12 {x}^{4} - 16 {x}^{2}y + 9 {x}^{2}y - 12 {y}^{2} }=12x

4

−16x

2

y+9x

2

y−12y

2

= \sf{12 {x}^{4} -7 {x}^{2}y - 12 {y}^{2} }=12x

4

−7x

2

y−12y

2

Hence

\sf{(4 {x}^{2} + 3y)(3 {x}^{2} - 4y) = 12 {x}^{4} -7 {x}^{2}y - 12 {y}^{2} }(4x

2

+3y)(3x

2

−4y)=12x

4

−7x

2

y−12y

2

VERIFICATION

We need to verify for x = 1 & y = 2 the below result

\sf{(4 {x}^{2} + 3y)(3 {x}^{2} - 4y) = 12 {x}^{4} -7 {x}^{2}y - 12 {y}^{2} }(4x

2

+3y)(3x

2

−4y)=12x

4

−7x

2

y−12y

2

LHS

\sf{(4 {x}^{2} + 3y)(3 {x}^{2} - 4y) }(4x

2

+3y)(3x

2

−4y)

= \sf{ \bigg[4 \times {(1)}^{2} + 3 \times 2\bigg]\bigg[3 \times {(1)}^{2} - 4 \times 2 \bigg] }=[4×(1)

2

+3×2][3×(1)

2

−4×2]

= (4 + 6)(3 - 8)=(4+6)(3−8)

= 10 \times (- 5)=10×(−5)

= - 50=−50

RHS

\sf{ = 12 {x}^{4} -7 {x}^{2}y - 12 {y}^{2} }=12x

4

−7x

2

y−12y

2

= \sf{ 12 {(1)}^{4} -7 \times {(1)}^{2} \times 2 - 12 \times {(2)}^{2} }=12(1)

4

−7×(1)

2

×2−12×(2)

2

= \sf{ 12 - 14 - 48 }=12−14−48

= - 50=−50

∴ LHS = RHS

Hence verified

Step-by-step explanation:

please follow

Answered by legend8382
1

Step-by-step explanation:

Answer is 6x^2 + 12y.

Thanks

Similar questions