4x^2 -9x +5 =0 do it using formula method and completing square method CAUTION : NO SPAMMERS
Answers
Solution :-
Method 1 : Formula method
4x² - 9x + 5 = 0
Comparing the given equation with ax² + bx + c = 0 we get,
- a = 4
- b = - 9
- c = 5
Discriminant D = b² - 4ac
⇒ D = ( - 9 )² - 4( 4 )( 5 )
⇒ D = 81 - 80
⇒ D = 1
Since b² - 4ac i.e Discriminant > 0 therefore the equation has two real and distinct roots
Now, find roots of the equation using quadratic formula
⇒ x = ( - b ± √D )/2a
Substituting the values
⇒ x = [ - ( - 9 ) ± √1 ] / 2( 4 )
⇒ x = (9 ± 1)/8
⇒ x = (9 + 1)/8 or x = (9 - 1)/8
⇒ x = 10/8 or x = 8/8
⇒ x = 5/4 or x = 1
Method 2 : Completing the square method
4x² - 9x + 5 = 0
⇒ 4x² - 9x = - 5
Dividing throughout by '4'
⇒ 4x²/4 - 9x/4 = - 5/4
⇒ x² - 9x/4 = - 5/4
It can be written as
⇒ x² - 2( x )( 9/8 ) = - 5/4
Adding ( 9/8 )² on both sides
⇒ x² - 2( x )( 9/8 ) + ( 9/8 )² = - 5/4 + ( 9/8 )²
⇒ (x - 9/8)² = - 5/4 + 81/64
[ Because a² - 2ab + b² = (a - b)² ]
⇒ (x - 9/8)² = ( -80 + 81 )/64
⇒ (x - 9/8)² = 1/64
Taking square root on both sides
⇒ x - 9/8 = ± √1/64
⇒ x - 9/8 = ± 1/8
⇒ x - 9/8 = 1/8 or x - 9/8 = - 1/8
⇒ x = 1/8 + 9/8 or x = - 1/8 + 9/8
⇒ x = 10/8 or x = 8/8
⇒ x = 5/4 or x = 1