(4x^2-9y^2)^3+(9y^2-16y^2)^3+(16z^2-4x^2)^3 / (2x-3y)^2+(3y-4z)^2+(4z-2x)^3 simplyify
Answers
Given: The correct term is:
(4x^2-9y^2)^3+(9y^2-16z^2)^3+(16z^2-4x^2)^3 / (2x-3y)^2+(3y-4z)^2+(4z-2x)^3
To find: Simplify the above term.
Solution:
- Now the given term is :
(4x^2-9y^2)^3+(9y^2-16z^2)^3+(16z^2-4x^2)^3 ÷
(2x-3y)^2+(3y-4z)^2+(4z-2x)^3
- Now we know that :
- If a + b + c = 0 then a^3 + b^3 + c^3 = 3abc
- So applying it, we get:
- If ( (2x)^2 - (3y)^2 ) + ( (3y)^2 - (4z)^2 ) + ( (4z)^2 - (2x)^2 ) = 0
- Then :
( (2x)^2 - (3y)^2 )^3 + ( (3y)^2 - (4z)^2 )^3 + ( (4z)^2 - (2x)^2 )^3
= 3( (2x)^2 - (3y)^2 )×( (3y)^2 - (4z)^2 )×( (4z)^2 - (2x)^2 )
= 3(2x - 3y)(2x + 3y)(3y - 4z)(3y + 4z)(4z - 2x)(4z + 2x) ..........(i)
- Now similarly we have:
- If ( 2x - 3y ) + ( 3y - 4z ) + ( 4z - 2x ) = 0
- Then :
(2x-3y)^3+(3y-4z)^3+(4z-2x)^3 = 3(2x-3y)( 3y - 4z )(4z - 2x ) .......(ii)
- Now putting (i) and (ii) together, we get:
3(2x - 3y)(2x + 3y)(3y - 4z)(3y + 4z)(4z - 2x)(4z + 2x) ÷
3( 2x - 3y )( 3y - 4z )(4z - 2x )
- Cancelling common terms, we get:
3(2x + 3y)(3y + 4z)(4z + 2x)
Answer:
So the simplified answer of the term given is 3(2x + 3y)(3y + 4z)(4z + 2x)
Step-by-step explanation:
answer by Dear gyaan sir