Math, asked by jenney123456789, 10 months ago

(4x^2-9y^2)^3+(9y^2-16y^2)^3+(16z^2-4x^2)^3 / (2x-3y)^2+(3y-4z)^2+(4z-2x)^3 simplyify​

Answers

Answered by Agastya0606
35

Given: The correct term is:

            (4x^2-9y^2)^3+(9y^2-16z^2)^3+(16z^2-4x^2)^3 / (2x-3y)^2+(3y-4z)^2+(4z-2x)^3

To find: Simplify the above term.

Solution:

  • Now the given term is :

               (4x^2-9y^2)^3+(9y^2-16z^2)^3+(16z^2-4x^2)^3   ÷  

                                        (2x-3y)^2+(3y-4z)^2+(4z-2x)^3

  • Now we know that :
  • If a + b + c = 0 then a^3 + b^3 + c^3 = 3abc
  • So applying it, we get:
  • If ( (2x)^2 - (3y)^2 ) + ( (3y)^2 - (4z)^2 ) + ( (4z)^2 - (2x)^2 ) = 0
  • Then :

              ( (2x)^2 - (3y)^2 )^3 + ( (3y)^2 - (4z)^2 )^3 + ( (4z)^2 - (2x)^2 )^3

                 =  3( (2x)^2 - (3y)^2 )×( (3y)^2 - (4z)^2 )×( (4z)^2 - (2x)^2 )

                 =  3(2x - 3y)(2x + 3y)(3y - 4z)(3y + 4z)(4z - 2x)(4z + 2x)  ..........(i)

  • Now similarly we have:
  • If ( 2x - 3y ) + ( 3y - 4z ) + ( 4z - 2x ) = 0
  • Then :

              (2x-3y)^3+(3y-4z)^3+(4z-2x)^3 = 3(2x-3y)( 3y - 4z )(4z - 2x ) .......(ii)

  • Now putting (i) and (ii) together, we get:

             3(2x - 3y)(2x + 3y)(3y - 4z)(3y + 4z)(4z - 2x)(4z + 2x) ÷

                                           3( 2x - 3y )( 3y - 4z )(4z - 2x )

  • Cancelling common terms, we get:

             3(2x + 3y)(3y + 4z)(4z + 2x)

Answer:

So the simplified answer of the term given is 3(2x + 3y)(3y + 4z)(4z + 2x)

Answered by gyaansaharma
21

Step-by-step explanation:

answer by Dear gyaan sir

Attachments:
Similar questions