Math, asked by shubhgupta4814, 11 months ago

-4x(2+x)=8 solve equation

Answers

Answered by Hiteshbehera74
0

 - 4x(2 + x) = 8 \\  - x(2 + x) = 2 \\  - 2x -  {x}^{2}  = 2 \\  {x}^{2}  + 2x + 2 = 0 \\  {x}^{2}  + 2x + 1 - 1 =  - 2 \\  {x}^{2}  + 2x  + 1=  - 1 \\  {(x + 1)}^{2}  =  - 1 \\ x + 1 =  \sqrt{ - 1}  \\ x =  - 1 +  \sqrt{ - 1} \\ or \: x =  - 1 -  \sqrt{ - 1}

i.e., x = -1-i or x = -1+i

i.e., there's no real values for x.

Answered by sanketj
0

-4x(2 + x) = 8

-8x - 4x² - 8 = 0

4x² + 8x + 8 = 0

b² - 4ac = 64 - 128 = -64 < 0

since the discriminant is smaller than zero, the roots are imaginary.

(if you are in 11th and have learnt the chapter "complex numbers", only then the further part is applicable for you to apply)

x =  \frac{ - b  +   \sqrt{ {b}^{2} - 4ac } }{2a}  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \: \frac{ - b   -    \sqrt{ {b}^{2} - 4ac } }{2a} \\ x =   \frac{ - 8 +   \sqrt{ - 64} }{8}  \:  \:  \:  \: or \:  \:  \:  \:   \frac{ - 8 -  \sqrt{ - 64} }{8} \\ x =   \frac{ - 8 +  \sqrt{(64)( - 1)} }{8}   \: or \:  \frac{ - 8  -   \sqrt{(64)( - 1)} }{8} \\ x =  \frac{ - 8 + 8 \sqrt{ - 1} }{8}  \: or \: \frac{ - 8  -  8 \sqrt{ - 1} }{8} \\ x =  \frac{ - 8 + 8i}{8}  \:  \:  \:  \: or \:  \:  \:  \:  \frac{ - 8 - 8i}{8}  \\ x =  - 1 + i \:  \:  \:  \: or \:  \:  \:  \:  - 1 - i

Hence, the solutions of the given equation are either x = -1 + i

or x = -1 - i.

Similar questions