Math, asked by firozadodmani, 18 days ago

4x-3y=23 and x+2y=3 by using subtitution method??​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:4x - 3y = 23 -  -  - (1)

and

\rm :\longmapsto\:x + 2y = 3

\bf\implies \:x = 3 - 2y -  -  - (2)

On substituting (2) in (1), we get

\rm :\longmapsto\:4(3 - 2y) - 3y = 23

\rm :\longmapsto\:12 - 8y - 3y = 23

\rm :\longmapsto\:12 - 11y = 23

\rm :\longmapsto\:- 11y = 23 - 12

\rm :\longmapsto\:- 11y = 11

\bf\implies \:y \:  =  \:  -  \: 1

On substituting the value of y in equation (2), we get

\rm :\longmapsto\:x = 3 - 2( - 1)

\rm :\longmapsto\:x = 3  + 2

\bf\implies \:x \:  = \:  5

Hence,

\begin{gathered}\begin{gathered}\bf\: Solution \: is \: -\begin{cases} &\sf{x \:  =  \: 5} \\ \\  &\sf{y \:  =  \:  -  \: 1} \end{cases}\end{gathered}\end{gathered}

Verification :-

Consider equation (1), we have

\rm :\longmapsto\:4x - 3y = 23

On substituting the values of x and y, we get

\rm :\longmapsto\:4(5)- 3( - 1)= 23

\rm :\longmapsto\:20 + 3= 23

\bf\implies \:23 = 23

Hence, Verified

Now, Consider equation (2), we have

\rm :\longmapsto\:x + 2y = 3

On substituting the values of x and y, we get

\rm :\longmapsto\:5 + 2( - 1)= 3

\rm :\longmapsto\:5 - 2= 3

\bf\implies \:3 = 3

Hence, Verified

Answered by XxitsmrseenuxX
19

Answer:

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:4x - 3y = 23 -  -  - (1)

and

\rm :\longmapsto\:x + 2y = 3

\bf\implies \:x = 3 - 2y -  -  - (2)

On substituting (2) in (1), we get

\rm :\longmapsto\:4(3 - 2y) - 3y = 23

\rm :\longmapsto\:12 - 8y - 3y = 23

\rm :\longmapsto\:12 - 11y = 23

\rm :\longmapsto\:- 11y = 23 - 12

\rm :\longmapsto\:- 11y = 11

\bf\implies \:y \:  =  \:  -  \: 1

On substituting the value of y in equation (2), we get

\rm :\longmapsto\:x = 3 - 2( - 1)

\rm :\longmapsto\:x = 3  + 2

\bf\implies \:x \:  = \:  5

Hence,

\begin{gathered}\begin{gathered}\bf\: Solution \: is \: -\begin{cases} &\sf{x \:  =  \: 5} \\ \\  &\sf{y \:  =  \:  -  \: 1} \end{cases}\end{gathered}\end{gathered}

Verification :-

Consider equation (1), we have

\rm :\longmapsto\:4x - 3y = 23

On substituting the values of x and y, we get

\rm :\longmapsto\:4(5)- 3( - 1)= 23

\rm :\longmapsto\:20 + 3= 23

\bf\implies \:23 = 23

Hence, Verified

Now, Consider equation (2), we have

\rm :\longmapsto\:x + 2y = 3

On substituting the values of x and y, we get

\rm :\longmapsto\:5 + 2( - 1)= 3

\rm :\longmapsto\:5 - 2= 3

\bf\implies \:3 = 3

Hence, Verified

Similar questions