Math, asked by ishikagupta4122005, 1 month ago

4x-3y-8=0,6x-y-29/3=0 by cross multiplication method​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:4x - 3y = 8 -  - (1)

and

\rm :\longmapsto\:6x - y - \dfrac{29}{3}  = 0

can be rewritten as

\rm :\longmapsto\:6x - y  =  \dfrac{29}{3}

\rm :\longmapsto\:18x - 3y = 29 -  - (2)

Using Cross Multiplication method

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \begin{gathered} \begin{array}{|c|c|c|c|} \bf{2} & \bf{3}& \bf{1}& \bf{2}  \\ \\  - 3&8&4& - 3\\ \\  - 3&29&18& - 3\end{array}\end{gathered}

\rm :\longmapsto\:\dfrac{x}{ - 87 + 24}  = \dfrac{y}{144 - 116}  = \dfrac{ - 1}{ - 12 + 54}

\rm :\longmapsto\:\dfrac{x}{ -63}  = \dfrac{y}{28}  = \dfrac{ - 1}{42}

\rm :\longmapsto\:\dfrac{x}{ -63}  = \dfrac{y}{28}  = \dfrac{ 1}{ - 42}

On taking first and third member, we have

\rm :\longmapsto\:\dfrac{x}{ -63}  = \dfrac{ 1}{ - 42}

\rm :\longmapsto\:x = \dfrac{ - 63}{ - 42}

\bf\implies \:x = \dfrac{3}{2}

On taking second and third member, we have

\rm :\longmapsto\: \dfrac{y}{28}  = \dfrac{ 1}{ - 42}

\rm :\longmapsto\:y = \dfrac{28}{ - 42}

\bf\implies \:y =  -  \: \dfrac{2}{3}

Additional Information :-

There are 4 methods to solve this type of pair of linear equations.

  • 1. Method of Substitution

  • 2. Method of Eliminations

  • 3. Method of Cross Multiplication

  • 4. Graphical Method

Similar questions