Math, asked by ypranami, 1 year ago

4x^5+2x^4-x^3+4x^2-7 divided by (x-1) by long division method

Answers

Answered by ashishks1912
8

GIVEN :

The expression is 4x^5+2x^4-x^3+4x^2-7 divided by (x-1) by long division method

TO FIND :

The quotient and remainder for the given expression 4x^5+2x^4-x^3+4x^2-7 divided by (x-1) by long division method

SOLUTION :

Given that the expression 4x^5+2x^4-x^3+4x^2-7 divided by (x-1) by long division method

Given expression can be written as 4x^5+2x^4-x^3+4x^2+0x-7

         4x^4+6x^3+5x^2+9x+9

    ______________________________

x-1) 4x^5+2x^4-x^3+4x^2+0x-7

      4x^5-4x^4

    _(-)___(+)_______________

                   6x^4-x^3

                   6x^4-6x^3

                 _(-)___(+)_____________

                              5x^3+4x^2

                              5x^3-5x^2

                         __(-)___(+)____________

                                          9x^2+0x

                                          9x^2-9x

                                         _(-)__(+)______

                                                     9x-7

                                                     9x-9

                                                   _(-)_(+)_

                                                            2

                                                    ______

The quotient 4x^4+6x^3+5x^2+9x+9  is and remainder is 2 when the given expression 4x^5+2x^4-x^3+4x^2-7 is divided by (x-1) by long division method.

Quotient=4x^4+6x^3+5x^2+9x+9 and remainder=2.

Answered by samybro12
5

Answer:

refer to the attachment

Step-by-step explanation:

plz Mark as brainiest

Attachments:
Similar questions