Math, asked by fatemalunawadi, 10 months ago

(4x-5)(4x+1) (using identities)

Answers

Answered by rohit14541
0

Answer:

.

Step-by-step explanation:

(a-b)(a+b)=a square-2ab+b square

Answered by TRISHNADEVI
6

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:  \: SOLUTION \:  \: } \mid}}}}}

\huge{ \underline{ \mathsf{ \red{ \:  \: Using  \:  \:  identity \:  \: }}}}</p><p>

 \underline{ \underline{ \mathbb{ \pink{ \:   \: \star : IDENTITY  \:  \:  \: USED \:  :  \mapsto \: }}}} \\  \\   \boxed{ \green{\mathtt{ \: (x + a)(x + b) = x {}^{2}  + (a + b)x + ab \: }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathtt{(4x - 5)(4x + 1)} \\  \\  \mathtt{ = (4x) {}^{2}  + \{ ( - 5) + 1  \} \times( 4x )+  \{( - 5) \times 1 \}} \\  \\   \mathtt{ = 16x {}^{2} + ( - 5 + 1) \times 4x + ( - 5) } \\  \\   \mathtt{ = 16x {}^{2}  + ( - 4) \times 4x - 5} \\  \\   \mathtt{ = 16x {}^{2}  - 16x - 5}

 \huge{ \underline{ \mathsf{ \red{ \:  \: Without  \:  \: using  \:  \: identity \:  \: }}}}

 \:  \:  \:  \:  \:  \:   \mathtt{(4x - 5)(4x + 1)} \\  \\   \mathtt{ = 4x(4x + 1) - 5(4x + 1)} \\  \\   \mathtt{ =( 4x \times 4x + 4x \times 1) - (5 \times 4x + 5 \times 1)} \\  \\   \mathtt{ = 16x {}^{2} + 4x - 20x - 5 } \\  \\   \mathtt{ = 16x {}^{2}  - 16x - 5}

Similar questions