Math, asked by berabimal, 9 months ago

4x + 5y = 71 and 5x + 3y = 66​

Answers

Answered by BRAINLYADDICTOR
20

★FIND:

\bold{The} \bold{value} \bold{of} \bold{'x'} \bold{and }\bold{'y'.}

★GIVEN:

\bold{4x + 5y = 71..EQ1}

\bold{5x + 3y = 66..EQ2}

★SOLUTION:

\bold{EQ1=>5(4x + 5y = 71)}

\bold{20x+25y=355..EQ3}

\bold{EQ2=>4(5x+3y=66)}

\bold{20x+12y=264..EQ4}

\bold{SUBTRACTING} \bold{EQ3} \bold{AND} \bold{EQ4}

\bold{20x+25y-20x-12y=355-264}

\bold{13y=91}

\bold{y=91/13}

\bold{y=7}

\bold{sub,}\bold{y=7} \bold{in} \bold{EQ1} \bold{OR} \bold{EQ2}

\bold{EQ1=>4x+5(7)=71}

\bold{4x+35=71}

\bold{4x=71-35}

\bold{4x=36}

\bold{x=36/4}

\bold{x=9}

\bold{so,} \bold{(x,y)} \bold{=} \bold{(9,7)}

★VERIFICATION:

\bold{sub, } \bold{(x, y) =(9, 7)} \bold{in} \bold{EQ1} \bold{OR}\bold{EQ2}

\bold{EQ1=>4(9)+5(7)=71}

\bold{36+35=71}

\bold{71=71}

\bold{EQ2=>5(9)+3(7)=66}

\bold{45+21=66}

\bold{66=66}

\bold{(x,y)} \bold{=} \bold{(9,7)}

Answered by abhinavraj980161
4

x=9

y=7

here's your answers sorry I am busy cant do step by step

Similar questions