Math, asked by rajsinghrajput4, 10 months ago

4x+6/x+13=0 your answer correct to two decimal places by quadratic equation ​

Answers

Answered by amitkumar44481
15

SolutioN :

We have, Quadratic Equation.

 \tt  : \implies 4x +  \dfrac{6}{x}  + 13 =0 .

 \tt  : \implies  \dfrac{4 {x}^{2}  + 6 + 13x}{x} =0 .

 \tt  : \implies  4 {x}^{2}  + 6 + 13x=0 \times x .

 \tt  : \implies  4 {x}^{2}  + 6 + 13x=0.

 \tt  : \implies  4 {x}^{2}  + 13x + 6 =0 .

Compare with General Formula.

 \tt  \dagger \:  \:  \:  \:  \:   a {x}^{2}  + bx + c=0.

Where as,

  • a = 4.
  • b = 13.
  • c = 6.

Now, By Quadratic Formula.

 \tt  \dagger \:  \:  \:  \:  \: \fbox{ x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }

 \tt  : \implies x =  \frac{ - 13 \pm \sqrt{ { \big(13 \big)}^{2} - 4 \times 4 \times 6 } }{2 \times 4}

 \tt  : \implies x =  \dfrac{ - 13 \pm \sqrt{ 169 - 96 } }{8}

 \tt  : \implies x =  \dfrac{ - 13 \pm \sqrt{ 73 } }{8}

Therefore, the value of x = 13 ± √73 / 8.

Answered by ItzArchimedes
65

 \large\underline{\underline{\mathbb{\purple{ANSWER}}}}

 \longrightarrow \tt{4x +\dfrac{6}{x}+ 13 = 0 } \\\\ \longrightarrow \tt{\dfrac{4x^2 + 6 + 13x}{x}= 0} \\\\\longrightarrow \tt{4x^2 + 13x + 6 = 0}\\\\ \rm{Now  , we \;got \;a\; quadratic\; equation }\\\\\rm{Finding \;its\; roots \;by\; using \;quadratic\; formula}\\\\ \dagger\boxed{\bf{x=\frac{-b\pm\sqrt{b^2 - 4ac}}{2a}}}

Where

  • b = 13
  • a = 4
  • c = 6

Substituting the values we have

 \longrightarrow \tt{x = \dfrac{-13 \pm \sqrt{13^2 - 4(4)(6)}}{2(4)}} \\\\ \longrightarrow \tt{\dfrac{-13 \pm \sqrt{169 - 96 }}{8}}\\\\ \longrightarrow \tt{x = \frac{-13+\sqrt{73}}{8}(or)  \frac{-13-\sqrt{73}}{8}}

 \therefore\underline\orange{{\sf{Hence,\; x =\dfrac{ -13\pm\sqrt{73}}{8}}}}

Similar questions