Math, asked by anoopindersingh15, 8 months ago

4x+6y=15 3x-4y=7 solve by substitution method

Answers

Answered by jobha
0

Step-by-step explanation:

4x+6y=15, 3x-4y=7 solve using substitution method?

AnswerSave

10 Answers

alpha's avatar

alpha

Lv 7

1 decade ago

Favorite Answer

[02]

4x+6y=15......(1)

3x-4y=7.........(2)

from 1 we get,

4x=15-6y

x=(15-6y)/4

substituting x by (15-6y)/4 in eqn 2

3(15-6y)/4 -4y=7

Multiplying both sides by 4

3(15-6y)-16y=28

45-18y-16y=28

-34y=28-45= -17

y= -17/-34=1/2

Plugging y in 1,we get

4x+3=15

4x=15-3=12

x=12/4=3

x=3 and y=1/2 ans

...Show more

11

Jun Agruda's avatar

Jun Agruda

Lv 7

1 decade ago

Relative values of y:

4x + 6y = 15

6y = 15 - 4x

y = (15 - 4x)/6

3x - 4y = 7

4y = 3x - 7

y = (3x - 7)/4

Find x:

4(15 - 4x) = 6(3x - 7)

2(15 - 4x) = 3(3x - 7)

30 - 8x = 9x - 21

17x = 51

x = 3

Find y:

= (15 - 4[3])/6

= (15 - 12)/6

= 3/6 or 1/2

Answer: x = 3, y = 1/2

Proof:

(4[3] + 6[1/2]) - (3[3] - 4[1/2]) = 15 - 7

(12 + 3) - (9 - 2) = 8

15 - (7) = 8

15 - 7 = 8

8 = 8

...Show more

21

adjr221's avatar

adjr221

1 decade ago

3x-4y=7 ====> (3x-7)/4=y

subsit. y in the second equation you get

4x+6(3x-7)/4=15 now solve for x ===> x=3

replace the x in the first equation 3x-4y=7 and solve for y

3(3)-4y=7 ===> y=1/2

the answer on the top are not correct. try placing the values of x and y in the equations and see for your self

...Show more

11

♪£yricảl♪'s avatar

♪£yricảl♪

Lv 4

1 decade ago

4x+6y=15 ---[1]

3x-4y=7 ---[2]

From [1],

4x = 15 - 6y

x = (15 - 6y) / 4 ---[3]

Sub. [3] into [2],

3[(15 - 6y) / 4] - 4y = 7

(45 - 18y) / 4 - 4y = 7

(45 - 18y) - 16y = 28

45 - 34y = 28

34y = 17

y = 1/2

Sub. (y = 1/2) into [3],

=> x = (15 - 6y) / 4

=> x = [15 - 6(1/2)] / 4

=> x = [15 - 3] / 4

=> x = 3

x = 3

y = 1/2

Answered by dualadmire
0

The solution is x = 3 and y = 1/2

Given: The equations 4x + 6y = 15 and 3x - 4y = 7.

To Find: The value of x and y using the substitution method.

Solution:

  • The substitution method is done by taking a variable in terms of another from one equation and putting the value in the respective position of the second equation.

Coming to the numerical, we are given 2 equations,

    4x + 6y = 15                                               ...(1)

    3x - 4y = 7                                                  ...(2)

We can write equation (2) like this,

    3x = 7 + 4y

⇒  x = ( 4y + 7 )/3                                            ... (3)

Now, we shall put (3) in equation (1) and solve for 'y',

     4x + 6y = 15      

⇒  4 ×  ( 4y + 7 )/3  + 6y = 15    

⇒ 16y/3 + 28/3 + 6y = 15

⇒ 34y/3 = 17/3

⇒ y = ( 17/3 ) / ( 3/34 )

⇒ y = 1/2                                                          ....(4)

Putting (4) in (2), we get

   3x - 4y = 7    

⇒ 3x - 4 × 1/2 = 7

⇒ 3x = 9

⇒ x = 3

Hence, the solution is x = 3 and y = 1/2.

#SPJ2

Similar questions