Math, asked by anmolmiglani947, 6 months ago

(4x²-16x+15)÷(2x-3)

Factorise and divide.​

Answers

Answered by BaroodJatti12
5

STEP

1

:

Equation at the end of step 1

 ((0 -  22x2) -  16x) -  15  = 0  

STEP

2

:

STEP

3

:

Pulling out like terms

3.1     Pull out like factors :

  -4x2 - 16x - 15  =   -1 • (4x2 + 16x + 15)  

Trying to factor by splitting the middle term

3.2     Factoring  4x2 + 16x + 15  

The first term is,  4x2  its coefficient is  4 .

The middle term is,  +16x  its coefficient is  16 .

The last term, "the constant", is  +15  

Step-1 : Multiply the coefficient of the first term by the constant   4 • 15 = 60  

Step-2 : Find two factors of  60  whose sum equals the coefficient of the middle term, which is   16 .

     -60    +    -1    =    -61  

     -30    +    -2    =    -32  

     -20    +    -3    =    -23  

     -15    +    -4    =    -19  

     -12    +    -5    =    -17  

     -10    +    -6    =    -16  

     -6    +    -10    =    -16  

     -5    +    -12    =    -17  

     -4    +    -15    =    -19  

     -3    +    -20    =    -23  

     -2    +    -30    =    -32  

     -1    +    -60    =    -61  

     1    +    60    =    61  

     2    +    30    =    32  

     3    +    20    =    23  

     4    +    15    =    19  

     5    +    12    =    17  

     6    +    10    =    16    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  6  and  10  

                    4x2 + 6x + 10x + 15

Step-4 : Add up the first 2 terms, pulling out like factors :

                   2x • (2x+3)

             Add up the last 2 terms, pulling out common factors :

                   5 • (2x+3)

Step-5 : Add up the four terms of step 4 :

                   (2x+5)  •  (2x+3)

            Which is the desired factorization

Equation at the end of step

3

:

 (-2x - 3) • (2x + 5)  = 0  

STEP

4

:

Theory - Roots of a product

4.1    A product of several terms equals zero.  

When a product of two or more terms equals zero, then at least one of the terms must be zero.  

We shall now solve each term = 0 separately  

In other words, we are going to solve as many equations as there are terms in the product  

Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation:

4.2      Solve  :    -2x-3 = 0  

Add  3  to both sides of the equation :  

                     -2x = 3

Multiply both sides of the equation by (-1) :  2x = -3

Divide both sides of the equation by 2:

                    x = -3/2 = -1.500

Solving a Single Variable Equation:

4.3      Solve  :    2x+5 = 0  

Subtract  5  from both sides of the equation :  

                     2x = -5

Divide both sides of the equation by 2:

                    x = -5/2 = -2.500

Similar questions