Math, asked by tejatesla262, 9 months ago

4x²-2(a²+b²)x+a²b²=0 factorise the quadratic polynomial​

Answers

Answered by Anonymous
7

AnswEr :

Given Equation,

 \sf \: 4 {x}^{2}  - 2( {a}^{2}  +  {b}^{2} )x +  {a}^{2}  {b}^{2}  = 0

Expanding the equation,

 \longrightarrow \:  \sf \:  {4x}^{2}  - 2 {a}^{2}x  -  {2b}^{2}x  +  {a}^{2}  {b}^{2}  = 0

Now,

 \longrightarrow \:  \sf \: 2x(2x -  {a}^{2} ) -  {b}^{2} (2x -  {a}^{2} ) = 0 \\  \\  \longrightarrow \:  \sf \: (2x -  {a}^{2} )(2x -  {b}^{2} ) = 0 \\  \\  \longrightarrow \:  \sf \: 2x -  {a}^{2}  =0  \: or \:  \: 2x -  {b}^{2}  = 0 \\   \\  \longrightarrow \:  \sf \: x =  \dfrac{ {a}^{2} }{2}  \: or \:  \:   \dfrac{ {b}^{2} }{2}

The roots of the above equation are a²/2 and b²/2

Answered by Saby123
2

 \tt{\huge{\orange {Hello!!! }}} C.D

QUESTION :

4x²-2(a²+b²)x+a²b²=0 factorise the quadratic polynomial

SOLUTION :

Factorising :

4 x^2 - 2 ( a^2 + b^2 ) x + a^2b^2

=> 4 x^2 - 2 a^2 x - 2 b^2 x + a^2 b^2

=> 2X ( 2 X - a^2 ) - b^2 ( 2 x - a^2 )

=> ( 2 X - a ^ 2 ) ( 2 x - b^2 )

The Zeroes of the Polynomial are :

=> 2 X = a^2

=> X = a^2 / 2.........[ Root 1 ]

=> 2 X = b^2

=> X = b^2 / 2 .......... [ Root 2 ]

Answer :

The result from Factorising :

=> ( 2 X - a ^ 2 ) ( 2 x - b^2 )

Roots :

=> X = a^2 / 2.........[ Root 1 ]

=> X = b^2 / 2 .......... [ Root 2 ]

Similar questions