Math, asked by nilanjanabhattachary, 1 month ago

4x²-4ax+(a²-b²) = 0
solve the equation.

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given quadratic equation is

\red{\rm :\longmapsto\: {4x}^{2} + 4ax + ( {a}^{2} -  {b}^{2}) = 0}

can be rewritten as

\rm :\longmapsto\: {4x}^{2} - 4ax +  {a}^{2}  -  {b}^{2} = 0

\rm :\longmapsto\: ({4x}^{2} - 4ax +  {a}^{2})  -  {b}^{2} = 0

\rm :\longmapsto\:  \bigg({(2x)}^{2} - 4ax +  {(a)}^{2} \bigg)  -  {b}^{2} = 0

\rm :\longmapsto\:  \bigg({(2x)}^{2} - 2 \times 2a \times x +  {(a)}^{2} \bigg)  -  {b}^{2} = 0

We know that,

\boxed{ \rm{  {x}^{2} - 2xy +  {y}^{2} =  {(x - y)}^{2}}}

So, using this identity, we get

\rm :\longmapsto\: {(2x - a)}^{2} -  {b}^{2}  = 0

We know,

\boxed{ \rm{  {x}^{2} -  {y}^{2} = (x + y)(x - y)}}

Using this identity, we get

\rm :\longmapsto\:(2x - a - b)(2x - a + b) = 0

\rm :\longmapsto\:2x - a - b = 0 \:  \: or \:  \: 2x - a + b= 0

\rm :\longmapsto\:2x = a + b \:  \: or \:  \: 2x =  a  -  b

\bf\implies \:x = \dfrac{a + b}{2}  \:  \: or \:  \: x = \dfrac{a - b}{2}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions