Math, asked by nidhisingh35, 1 year ago

4x²+4x+1=0 solve the equation

Answers

Answered by Shubhendu8898
54

Given,

4x² + 4x + 1 =

4x² + 2x + 2x + 1 = 0

2x(2x+1) + 1(2x+1) = 0

(2x+1)(2x+1) = 0

(2x+1)² = 0

2x + 1 = 0

x = -1/2

Aliter;-

4x² + 4x + 1 =0

(2x)² + 1² + 2*(2x)*1 = 0

(2x+1)² = 0 ...........( (a+b)² = a² + b² + 2ab )

x = -1/2

Answered by payalchatterje
2

Answer:

Solution of equation 4x²+4x+1=0 is x= -  \frac{1}{2}

Step-by-step explanation:

Given,

 4{x}^{2}  + 4x + 1 = 0

By Middle term process we can solve this equation.

Now,

4 {x}^{2}  + 4x + 1 = 0 \\ 4 {x}^{2}  + (2 + 2)x + 1 = 0 \\ 4 {x}^{2}  + 2x + 2x + 1 = 0 \\ 2x(2x + 1) + (2x + 1) = 0 \\ (2x + 1)(2x + 1) = 0 \\ {(2x + 1)}^{2}  = 0 \\ 2x + 1 = 0 \\ 2x =  - 1 \\ x =  -  \frac{1}{2}

Required Solution of the equation is  -  \frac{1}{2}

Some important formulas of Algebra,

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

{a}^{2}  -  {b}^{2}  = (a + b)(a - b)\\{a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab\\{a}^{2}  +  {b}^{2}  =  {(a - b)}^{2}  + 2ab\\{a}^{3}  -  {b}^{3}  = (a  -  b)( {a}^{2}   +  ab +  {b}^{2} )\\{a}^{3}   +   {b}^{3}  = (a + b)( {a}^{2}    -   ab +  {b}^{2} )

Similar questions