Math, asked by anuj2438, 10 months ago

4x² - 4x +1 find the zeros of the following quadratic polynomial and verify the relationship between the zeros and the coefficients​

Answers

Answered by Anonymous
34

We have,

4x² - 4x + 1 = 0 [ Given ]

⇒4x² - 2x - 2x + 1 = 0

⇒ 2x ( 2x - 1 ) - 1 ( 2x - 1 ) = 0

⇒ ( 2x - 1 ) ( 2x - 1 ) = 0

⇒ 2x - 1 = 0 and 2x - 1 = 0

⇒ x = 1/2 and x = 1/2

Therefore, the zeroes of 4x² - 4x + 1 are 1/2 and 1/2.

★ Sum of the zeroes :

1/2 + 1/2 = - coefficient of x / coefficient of x²

⇒ 1 + 1 / 2 = - ( - 4 ) / 4

⇒ 2/2 = 4/4

⇒ 1 = 1

★ Product of the zeroes :

1/2 × 1/2 = constant term / coefficient of x²

⇒ 1/4 = 1/4

Verified.

Answered by sethrollins13
13

✯✯ QUESTION ✯✯

4x² - 4x +1 find the zeros of the following quadratic polynomial and verify the relationship between the zeros and the coefficients..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longmapsto\tt\bold{{4x}^{2}-4x+1}

By Splitting Middle Term : -

\longmapsto\tt\bold{{4x}^{2}-4x+1=0}

\longmapsto\tt{{4x}^{2}-2x-2x+1=0}

\longmapsto\tt{2x(2x-1)-1(2x-1)}

\longmapsto\tt\bold{(2x-1)(2x-1)}

  • x = 1/2
  • x = 1/2

So , 1/2 and 1/2 are the zeroes of polynomial 4x²-4x+1...

Here : -

  • a = 4
  • b = -4
  • c = 1

Sum of Zeroes : -

\longmapsto\tt{\alpha+\beta=\dfrac{-b}{a}}

\longmapsto\tt{\dfrac{1}{2}+{1}{2}=\dfrac{-(-4)}{4}}

\longmapsto\tt{\cancel\dfrac{2}{2}=\cancel\dfrac{4}{4}}

\longmapsto\tt\bold{1 = 1}

\red\longmapsto\:\large\underline{\boxed{\bf\green{L.H.S}\orange{=}\purple{R.H.S}}}

Product Of Zeroes : -

\longmapsto\tt\bold{\alpha\beta=\dfrac{c}{a}}

\longmapsto\tt{\dfrac{1}{2}\times{\dfrac{1}{2}}=\dfrac{1}{4}}

\longmapsto\tt\bold{\dfrac{1}{4}=\dfrac{1}{4}}

\pink\longmapsto\:\large\underline{\boxed{\bf\blue{R.H.S}\red{=}\orange{R.H.S}}}

Similar questions