Math, asked by ypraween1gmailcom, 4 months ago

4x²+5√2x-3 ka shunyak nikalen​

Answers

Answered by himanshukashyap0719
0

Step-by-step explanation:

4 {x}^{2}  + 5 \sqrt{2} x - 3 \\ 4 {x}^{2} + x(6 \sqrt{2}    -   \sqrt{2} ) - 3 \\ 4 {x}^{2}  + 6 \sqrt{2} x +  \sqrt{2} x - 3 \\ 2 \sqrt{2} x ( \sqrt{2}x  - 3) + 1( \sqrt{2} x - 3) \\  (\sqrt{2} x - 3)(2 \sqrt{2}x  + 1) = 0 \\  \sqrt{2} x - 3 = 0 \\ x =  \frac{3}{ \sqrt{2} }  \\ 2 \sqrt{2} x + 1 = 0 \\ x =  \frac{ - 1}{2 \sqrt{2} }

x =  \frac{3}{ \sqrt{2} } and \frac{ - 1}{2 \sqrt{2} }

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

\tt \:  \longrightarrow \:  {4x}^{2}  + 5 \sqrt{2} x - 3

\tt \:  \longrightarrow \:  {4x}^{2}  +  6 \sqrt{2} x -  \sqrt{2} x -  3

\tt \:  \longrightarrow \: 2 \times  \sqrt{2}  \times  \sqrt{2}  {x}^{2}  - 3 \times 2 \times  \sqrt{2} x -  \sqrt{2} x - 3

\tt \:  \longrightarrow \: 2 \sqrt{2} x( \sqrt{2} x  +  3) - 1( \sqrt{2} x + 3)

\tt \:  \longrightarrow \: ( \sqrt{2} x + 3)(2 \sqrt{2} x - 1)

\tt \:  \longrightarrow \: Hence \: zeroes \: are

\tt \:  \longrightarrow \:  \sqrt{2} x + 3 = 0 \: or \: 2 \sqrt{2} x - 1 = 0

\tt \:  \longrightarrow \: x =  - \dfrac{3}{ \sqrt{2} }  \: or \: x \:  = \dfrac{1}{2 \sqrt{2} }

Similar questions