Math, asked by fernandessagar58, 10 months ago

4x2-5x+2=0 solve using completing the square method​

Answers

Answered by nishantchib321
1

Answer:

4×2-5x+2=0

=8+2=-5x

=10=5x

=x=2

Answered by Anonymous
22

\sf\red{\underline{\underline{Answer:}}}

\sf{\frac{5+\sqrt-{7}}{8} \ and \ \frac{5-\sqrt{-7}}{8} \ are \ roots \ of \ the \ equation.}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{4x^{2}-5x+2=0}}

\sf\pink{To \ find:}

\sf{The \ roots \ of \ the \ equation.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{4x^{2}-5x+2=0}}

\sf{Divide \ equation \ through \ by \ 4}

\sf{\implies{x^{2}-\frac{5x}{4}+\frac{1}{2}=0}}

\sf{\implies{x^{2}-\frac{5x}{4}=-\frac{1}{2}}}

___________________________________

\sf{(\frac{1}{2}\times \ Coefficient \ of \ x)^{2}}

\sf{\implies{(\frac{1}{2}\times\frac{5}{4})^{2}}}

\sf{\implies{(\frac{5}{8})^{2}}}

\sf{\implies{\frac{25}{64}}}

____________________________________

\sf{Add \ \frac{25}{64} \ on \ both \ sides \ of \ equation.}

\sf{\implies{x^{2}-\frac{5x}{4}+\frac{25}{64}=-\frac{1}{2}+\frac{25}{64}}}

\sf{\implies{x^{2}-\frac{5x}{4}+\frac{25}{64}=\frac{-32+25}{64}}}

\sf{\implies{(x-\frac{5}{8})^{2}=\frac{-7}{64}}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\implies{x-\frac{5}{8}=\frac{\sqrt{-7}}{8} \ or \ -\frac{\sqrt{-7}}{8}}}

\sf{\implies{x=\frac{5}{8}+\frac{\sqrt{-7}}{8} \ or \ \frac{5}{8}-\frac{\sqrt{-7}}{8}}}

\sf{\implies{x=\frac{5+\sqrt{-7}}{8} \ or \ \frac{5-\sqrt{-7}}{8}}}

\sf\purple{\tt{\therefore{\frac{5+\sqrt{-7}}{8} \ and \ \frac{5-\sqrt{-7}}{8} \ are \ roots \ of \ the \ equation.}}}

Similar questions