Physics, asked by TheQuantumMan, 8 months ago

4x²+5x=7+4 find value of x.
Warning:- Random letter and wrong question not allowed.​

Answers

Answered by Anonymous
4

Answer:

 \boxed{\mathfrak{x =  \frac{ - 5 \pm \sqrt{201} }{8}}}

Explanation:

 \rm Solve \:  for  \: x  \: over \:  the \:  real \:  numbers:  \\ \rm \implies4 x^2 + 5 x = 7 + 4 \\  \\  \rm 7 + 4 = 11: \\  \rm \implies 4 x^2 + 5 x = 11 \\ \\   \rm Divide  \: both \:  sides  \: by \:  4: \\  \rm \implies x^2 + \frac{5x}{4}  =  \frac{11}{4}  \\  \\  \rm Add  \:  \frac{25}{64}  \:  to \:  both  \: sides: \\  \rm \implies x^2 +  \frac{5x}{4}  +  \frac{25}{64}  =  \frac{11}{4}  +  \frac{25}{64} \\  \\   \rm \implies x^2 +  \frac{5x}{4}  +  \frac{25}{64}  =    +  \frac{176 + 25}{64}  \\  \\  \rm \implies x^2 +  \frac{5x}{4}  +  \frac{25}{64}  =    \frac{201}{64}   \\  \\  \rm Write \:  the \:  left  \: hand \:  side  \: as \:  a \:  square: \\  \rm \implies  {x}^{2}  +  \frac{5x}{8}  +  \frac{5x}{8}  +  \frac{25}{64}  =  \frac{201}{64}  \\  \\  \rm \implies x(x +  \frac{5}{8} ) +  \frac{5}{8} (x +  \frac{5}{8} ) =  \frac{201}{64}  \\  \\  \rm \implies (x +  \frac{5}{8} ) (x +  \frac{5}{8} )  =  \frac{201}{64}  \\  \\  \rm \implies {(x +  \frac{5}{8} ) }^{2}  =  \frac{201}{64}   \\  \\ \rm Take \:  the \:  square \:  root  \: of  \: both \:  sides: \\  \rm \implies  \sqrt{{(x +  \frac{5}{8} ) }^{2} } =   \sqrt{\frac{201}{64}} \\  \\  \rm \implies x +  \frac{5}{8}  =  \pm \frac{ \sqrt{201} }{8}  \\  \\  \rm Subtract \:   \frac{5}{8}   \: from  \: both  \: sides: \\  \rm \implies x =  -  \frac{5}{8}  \pm \frac{ \sqrt{201} }{8}  \\  \\  \rm \implies x =  \frac{ - 5 \pm \sqrt{201} }{8}

Answered by BrainlyElon
2

\rm 4x^2+5x=7+4

:\implies \rm 4x^2+5x=11

:\implies \rm 4x^2+5x-11=0

Let's solve by completing the square method ,

:\implies \rm \dfrac{4x^2+5x-11}{4}=\dfrac{0}{4}

:\implies \rm x^2+\dfrac{5x}{4}-\dfrac{11}{4}=0

:\implies \rm x^2+2.x.\dfrac{5}{8}-\dfrac{11}{4}=0

:\implies \rm x^2+2.x.\dfrac{5}{8}+\left(\dfrac{5}{8}\right)^2=\dfrac{11}{4}+\left(\dfrac{5}{8}\right)^2

:\implies \rm \left(x+\dfrac{5}{8}\right)^2=\dfrac{11}{4}+\dfrac{25}{64}

:\implies \rm x+\dfrac{5}{8}=\pm \sqrt{\dfrac{201}{64}}

:\implies \rm x+\dfrac{5}{8}=\pm \dfrac{\sqrt{201}}{8}

:\implies \bf x=\dfrac{-5\pm \sqrt{201}}{8}

Similar questions