Math, asked by manjulapalamaku353, 10 months ago

4x2 +x-3=0,find out by quadratic formula .

Answers

Answered by amansharma264
2

Answer:

x =  \frac{3}{4} \\ x =  - 1 \\ both \: values \: are \: answer

Step-by-step explanation:

4 {x}^{2} + x - 3 = 0 \\ d =  {b}^{2} - 4ac \\ ( {1}^{2} ) - 4(4)( - 3) = 0 \\ 1  + 48 = 0 \\ 49 \\ x =  \frac{ - b +  \sqrt{d} }{2a} \\ x =  \frac{ - 1 +  \sqrt{49} }{8} \\ x =  \frac{ - 1 + 7}{8} \\ x =  \frac{6}{8} =  \frac{3}{4}  \\ x =  \frac{ - b -  \sqrt{d} }{2a} \\ x =  \frac{ - 1 -  \sqrt{49} }{8} \\ x =  \frac{ - 1 - 7}{8} \\ x =  \frac{ - 8}{8} \\ x =  - 1

Answered by Anonymous
0

QUESTION:

4x2 +x-3=0,find out by quadratic formula .

FORMULA USED :

\huge\red {x =  \frac{ - b \binom{ + }{ - }  \sqrt{ {b}^{2}  - 4ac} }{2a} }

where;

b = coefficient of x

a = coefficient of x square

c = constant term

now come to main question;

Here;

a = 4

b = 1

c = -3

Using the formula;

\huge\purple {x =  \frac{ - 1 \binom{ + }{ - } \sqrt{ {1}^{2}  - 4 \times 4 \times  - 3}  }{2 \times 4} }

x =  \frac{ - 1 \binom{ + }{ - } \sqrt{1 + 48}  }{8}

x =  \frac{ - 1 \binom{ + }{ - } \sqrt{49}  }{8}

x =  \frac{ - 1 \binom{ + }{ - }  \sqrt{7 \times 7} }{8}  \\  \\ x =  \frac{ - 1 \binom{ + }{ - }7 }{8}

\huge\red {x =  \frac{ - 1 \binom{ + }{ - }7 }{8}}

Taking negative;

x =  \frac{ - 1 - 7}{8}

x =  \frac{ - 8}{8}

\huge\orange {x =  - 1}

Taking positive;

x =  \frac{ - 1 + 7}{8}  \\ x =  \frac{6}{8}

\huge\blue {x =  \frac{3}{4}}

Similar questions