Math, asked by bashantmajhi850, 4 months ago

4x3=12
4)Answer the following questions
a)Find the point on y-axis which is equidistant from the point (-5,2) and(9,-2)​

Answers

Answered by SarcasticL0ve
39

☯ Let the given point be A (-5,2) and B (9,-2) is equidistant from point P.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

Given that,

  • The given points are equidistant from y - axis.

⠀⠀⠀⠀

\therefore It x - coordinate will be 0.

Therefore, Coordinates of P is (0,y).

⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

  • Point P is equidistant from A and B.

⠀⠀⠀⠀

:\implies\sf AP = BP\\ \\

\dag\;{\underline{\frak{Using\:Distance\:Formula,}}}\\ \\

\star\;{\boxed{\sf{\purple{d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}}}}\\ \\

Therefore,

:\implies\sf \sqrt{(0 - (-5))^2 + (y - 2)^2} = \sqrt{(0 - 9)^2 + (y - (-2))^2}\\ \\ \\ :\implies\sf \bigg( \sqrt{(0 - (-5))^2 + (y - 2)^2} \bigg)^2= \bigg(\sqrt{(0 - 9)^2 + (y - (-2))^2} \bigg)^2\\ \\

:\implies\sf (0 - (-5))^2 + (y - 2)^2 = (0 - 9)^2 + (y - (-2))^2\\ \\ \\ :\implies\sf 25 + y^2 + 4 - 4y = 81 + y^2 + 4 + 4y\\ \\ \\ \\ :\implies\sf \cancel{y^2} - 4y + 29 = \cancel{y^2} + 4y + 85\\ \\ \\ \\ :\implies\sf - 4y + 29 = 4y + 85\\ \\ \\ \\ :\implies\sf  - 4y - 4y = 85 - 29\\ \\ \\ \\ :\implies\sf - 8y = 56\\ \\ \\ :\implies\sf y = - \cancel{\dfrac{56}{8}}\\ \\ \\:\implies{\underline{\boxed{\frak{\pink{y = - 7}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Hence,\:the\:required\:point\:on\:y-axis\:is\:{\textsf{\textbf{(0,-7)}}}.}}}


SpamHunter: Awesome
Anonymous: Perfect as always 。◕‿◕。
Anonymous: Amazing
Answered by BrainlyShadow01
51

Given:-

  • The given points are equidistant from y - axis.

X - coordinate will be 0.

So,

Coordinates of P = ( 0 , y )

Solution:-

We use distance formula:-

 \tt\implies \: \sqrt{ {(0  - ( -5)] }^{2}  +  {(y - 2)}^{2}  }  =  \sqrt{{(0 - 9)}^{2}  + {[ y - ( -2 ) ]}^{2}}

\tt\implies \: {(\sqrt{ {(0  - ( -5)] }^{2}  +  {(y - 2)}^{2}  }) }^{2}  =  {(\sqrt{{(0 - 9)}^{2}  + {[ y - ( -2 ) ]}^{2}} )}^{2}

 \tt\implies \: { {[0  - ( -5)] }^{2}  +  {(y - 2)}^{2}  }  = {{(0 - 9)}^{2}  + {[ y - ( -2 ) ]}^{2}}

\tt\implies \: 25 +  {y}^{2}  + 4 - 4y = 81 +  {y}^{2}  + 4 + 4y

\tt\implies \:   {y}^{2}  -  {y}^{2}  - 4y - 4y = 85 - 29

\tt\implies \:    - 8y  = 56

\tt\implies \:   y =  \cancel\frac{ \:  \: 56 \:  \: }{ - 8}

\tt\implies \:  y  = -7

\boxed{\tt \: The\: \: required \: \: point \: \: in \: \: y - axis = ( 0 , -7 )}


SpamHunter: osm
Anonymous: Nice
Similar questions